Refine Your Search

Topic

Author

Affiliation

Search Results

Video

The Utilization of Flax Fiber Reinforcement in Polypropylene Compounds

2011-11-17
Polypropylene is typically reinforced with commodities that are non renewable and require a great deal of energy to produce. The marketplace needs a reinforcement that can offer beneficial physical properties, such as impact, while being attained from a renewable green source. Compounding flax fiber, which is traditionally an agricultural waste product burned by farmers, with polypropylene yields physical properties similar to traditional glass filled polypropylene. This combination should lead to cost saving opportunities while not sacrificing part performance. Presenter James Preston, Rhetech Inc.
Video

Hydraulic Hybrid System Optimization Using Design For Six Sigma

2011-12-05
There are several variables to consider when specifying a hydraulic hybrid system in a commercial vehicle. Parameters which can be controlled include various component sizes and some hybrid system calibration parameters. Presenter Paul Schwark, Bosch Rexroth AG
Video

Visionary's Take: An Engineering Journey into the Marketplace (Part 3 of 3)

2017-10-12
Can you become a visionary or are you born one? How does a visionary capture an opportunity and makes it a successful business? Are engineers more qualified to solve technical problems or run companies? SAE's "The Visionary's Take" addresses these and many other questions, by talking directly with those who have dared to tackle difficult engineering problems, and create real-life products out of their experience. In these short episodes, Sanjiv Singh and Lyle Chamberlain, respectively CEO and Chief Engineer from Near Earth Autonomy, talk about their experience in creating a brand-new company in the UAV world. Founded in 2011, Near Earth Autonomy brought together a group of engineers and roboticists, looking for unconventional solutions to very hard logistics problems, presenting danger to human life. The answers were developed by pushing technology to a higher level, testing quickly and often, and keeping an open mind to alternative ways of framing engineering challenges.
Video

Visionary's Take: An Engineering Journey into the Marketplace (Part 1 of 3)

2017-10-12
Can you become a visionary or are you born one? How does a visionary capture an opportunity and makes it a successful business? Are engineers more qualified to solve technical problems or run companies? SAE's "The Visionary's Take" addresses these and many other questions, by talking directly with those who have dared to tackle difficult engineering problems, and create real-life products out of their experience. In these short episodes, Sanjiv Singh and Lyle Chamberlain, respectively CEO and Chief Engineer from Near Earth Autonomy, talk about their experience in creating a brand-new company in the UAV world. Founded in 2011, Near Earth Autonomy brought together a group of engineers and roboticists, looking for unconventional solutions to very hard logistics problems, presenting danger to human life. The answers were developed by pushing technology to a higher level, testing quickly and often, and keeping an open mind to alternative ways of framing engineering challenges.
Journal Article

Exhaust Manifold Thermal Assessment with Ambient Heat Transfer Coefficient Optimization

2018-06-04
Abstract Exhaust manifolds are one of the most important components on the engine assembly, which is mounted on engine cylinder head. Exhaust manifolds connect exhaust ports of cylinders to the turbine for turbocharged diesel engine therefore they play a significant role in the performance of engine system. Exhaust manifolds are subjected to very harsh thermal loads; extreme heating under very high temperatures and cooling under low temperatures. Therefore designing a durable exhaust manifold is a challenging task. Computer aided engineering (CAE) is an effective tool to drive an exhaust manifold design at the early stage of engine development. Thus advanced CAE methodologies are required for the accurate prediction of temperature distribution. However, at the end of the development process, for the design verification purposes, various tests have to be carried out in engine dynamometer cells under severe operating conditions.
Journal Article

Design, Analysis, and Optimization of a Multi-Speed Powertrain for Class-7 Electric Trucks

2018-04-17
Abstract The development, analysis, and optimization of battery electric class-7 heavy-duty trucks equipped with multi-speed transmissions are discussed in this paper. The designs of five new traction motors-fractional-slot, concentrated winding machines-are proposed for use in heavy-duty electric trucks. The procedure for gear-ratio range selection is outlined and ranges of gear ratios for three-to six-speed transmission powertrains are calculated for each of the proposed electric traction motors. The simulation and gear-ratio optimization tasks for class-7 battery electric trucks are formulated. The energy consumption of the e-truck with the twenty possible powertrain combinations is minimized over the four driving cycles and the most efficient powertrain layouts that meet the performance criteria are recommended.
Journal Article

Computational Fluid Dynamic Simulation of In-Cylinder Pressures to Validate High-Range VCR

2018-10-22
Abstract This article serves as a proof-of-concept and feasibility analysis regarding a variable compression ratio (VCR) engine design utilizing an exhaust valve opening during the compression stroke to vary the compression ratio instead of the traditional method of changing the cylinder or piston geometry patented by Ford, Mercedes-Benz, Nissan, Peugeot, Gomecsys, et al. [1]. In this concept, an additional exhaust valve opening was used to reduce the virtual compression ratio of the engine, without geometric changes. A computational fluid dynamic model in ANSYS Forte was used to simulate a single-cylinder, cold flow, four-stroke, direct injection engine cycle. In this model, the engine was simulated at a compression ratio of 10:1. Then, the model was modified to a compression ratio of 17:1. Then, an additional valve opening at the end of the compression stroke was added to the 17:1 high compression model.
Journal Article

Hydro-Pneumatic Energy Harvesting Suspension System Using a PSO Based PID Controller

2018-08-01
Abstract In this article, a unique design for Hydro-Pneumatic Energy Harvesting Suspension HPEHS system is introduced. The design includes a hydraulic rectifier to maintain one-way flow direction in order to obtain maximum power generation from the vertical oscillation of the suspension system and achieve handling and comfort car drive. A mathematical model is presented to study the system dynamics and non-linear effects for HPEHS system. A simulation model is created by using Advanced Modeling Environment Simulations software (AMEsim) to analyze system performance. Furthermore, a co-simulation platform model is developed using Matlab-Simulink and AMEsim to optimize the PID controller parameters of the external variable load resistor applied on the generator by using Particle Swarm Optimization (PSO).
Journal Article

Improving Multi-Axle Vehicle Steering Coordination Performance Based on the Concept of Instantaneous Wheel Turn Center

2019-03-14
Abstract A new concept of instantaneous wheel turn center (IWTC) is proposed to evaluate and improve multi-axle vehicle steering coordination performance. The concept of IWTC and its calculation method are studied. The index named dispersion of IWTC is developed to evaluate the vehicle steering coordination performance quantitatively. The simulation tests based on a three-axle off-road vehicle model are conducted under different vehicle velocities and lateral accelerations. The simulation results show that the turn centers of different wheels are disperse, and the dispersion becomes larger with the increase of vehicle velocities and lateral acceleration. Since suspension has important influences on vehicle steering performance, the genetic algorithm is used to optimize the suspension hard points and bushing stiffness, aiming at minimizing the dispersion of wheel turn centers (DWTC) to improve the vehicle steering coordination performance.
Journal Article

Development of a Learning Capability in Virtual Operator Models

2019-03-14
Abstract This research developed methods for a virtual operator model (VOM) to learn the optimal control inputs for operation of a virtual excavator. Virtual design, used to model, simulate, and test new features, has often been limited by the fidelity of the virtual model of human operators. Human operator learns, over time, the capability, limits, and control characteristics of new vehicles to develop the best strategy to maximize the efficiency of operation. However, VOMs are developed with fixed strategies and for specific vehicle models (VMs) and require time-consuming re-tuning of the VOM for each new vehicle design. Thus, there typically is no capability to optimize strategies, taking account of variation in vehicle capabilities and limitations. A VOM learning capability was developed to optimize control inputs for the swing-to-pile task of a trenching operation. Different control strategies consisted of varied combinations of speed control, position control, and coast.
Journal Article

Robust Design for Steering Mechanism Based on Preference Function

2018-03-01
Abstract In order to improve robustness of vehicle dynamic performance, a steering mechanism model is proposed with alignment parameters of front wheel based on preference function method. In the steering mechanism model controllable variables include the trapezoid connection length, the base angle of steering trapezoid, the kingpin inclination angle, caster, camber and uncontrollable variables include load and initial braking velocity. Optimization objective is some vehicle dynamic performance. In the preference function method the individual performance preference and preference aggregation in designing variable space and performance variable space are analyzed. The individual performance preference includes the controllable variable preference, noise factor preference and optimization objective preference. The aggregation function is developed by aggregating all the individual performance preferences.
Journal Article

Combined Battery Design Optimization and Energy Management of a Series Hybrid Military Truck

2018-10-31
Abstract This article investigates the fuel savings potential of a series hybrid military truck using a simultaneous battery pack design and powertrain supervisory control optimization algorithm. The design optimization refers to the sizing of the lithium-ion battery pack in the hybrid configuration. The powertrain supervisory control optimization determines the most efficient way to split the power demand between the battery pack and the engine. Despite the available design and control optimization techniques, a generalized mathematical formulation and solution approach for combined design and control optimization is still missing in the literature. This article intends to fill that void by proposing a unified framework to simultaneously optimize both the battery pack size and power split control sequence. This is achieved through a combination of genetic algorithm (GA) and Pontryagin’s minimum principle (PMP) where the design parameters are integrated into the Hamiltonian function.
Journal Article

Field Evaluation of Biodiesel (B20) Use by Transit Buses

2009-10-06
2009-01-2899
The objective of this research project was to compare B20 (20% biodiesel fuel) and ultra-low-sulfur (ULSD) diesel-fueled buses in terms of fuel economy, vehicle maintenance, engine performance, component wear, and lube oil performance. We examined 15 model year (MY) 2002 Gillig 40-foot transit buses equipped with MY 2002 Cummins ISM engines. The engines met 2004 U.S. emission standards and employed exhaust gas recirculation (EGR). For 18 months, eight of these buses operated exclusively on B20 and seven operated exclusively on ULSD. The B20 and ULSD study groups operated from different depots of the St. Louis (Missouri) Metro, with bus routes matched for duty cycle parity. The B20- and ULSD-fueled buses exhibited comparable fuel economy, reliability (as measured by miles between road calls), and total maintenance costs. Engine and fuel system maintenance costs were also the same for the two groups after correcting for the higher average mileage of the B20 group.
Journal Article

Experimentally Compared Fuel Consumption Modelling of Refuse Collecting Vehicles for Energy Optimization Purposes

2014-05-09
2014-01-9023
This paper presents a novel methodology to develop and validate fuel consumption models of Refuse Collecting Vehicles (RCVs). The model development is based on the improvement of the classic approach. The validation methodology is based on recording vehicle drive cycles by the use of a low cost data acquisition system and post processing them by the use of GPS and map data. The corrected data are used to feed the mathematical energy models and the fuel consumption is estimated. In order to validate the proposed system, the fuel consumption estimated from these models is compared with real filling station refueling records. This comparison shows that these models are accurate to within 5%.
Journal Article

Signal-Based Actuators Fault Detection and Isolation for Gearbox Applications

2014-05-09
2014-01-9022
Electro-hydraulic actuated systems are widely used in industrial applications due to high torque density, higher speeds and wide bandwidth operation. However, the complexities and the parametric uncertainties of the hydraulic actuated systems pose challenges in establishing analytical mathematical models. Unlike electro-mechanical and pneumatic systems, the nonlinear dynamics due to dead band, hysteresis, nonlinear pressure flow relations, leakages and friction affects the pressure sensitivity and flow gain by altering the system's transient response, which can introduce asymmetric oscillatory behavior and a lag in the system response. The parametric uncertainties make it imperative to have condition monitoring with in-built diagnostics capability. Timely faults detection and isolation can help mitigate catastrophic failures. This paper presents a signal-based fault diagnostic scheme for a gearbox hydraulic actuator leakage detection using the wavelet transform.
Journal Article

Development Trends for Commercial and Industrial Engines

2014-09-30
2014-01-2325
Exhaust emission reduction and improvements in energy consumption will continuously determine future developments of on-road and off-road engines. Fuel flexibility by substituting Diesel with Natural Gas is becoming increasingly important. To meet these future requirements engines will get more complex. Additional and more advanced accessory systems for waste heat recovery (WHR), gaseous fuel supply, exhaust after-treatment and controls will be added to the base engine. This additional complexity will increase package size, weight and cost of the complete powertrain. Another critical element in future engine development is the optimization of the base engine. Fundamental questions are how much the base engine can contribute to meet the future exhaust emission standards, including CO2 and how much of the incremental size, weight and cost of the additional accessories can be compensated by optimizing the base engine.
Journal Article

Ride Optimization for a Heavy Commercial Vehicle

2014-04-01
2014-01-0843
The ride comfort of the commercial vehicle is mainly affected by several vibration isolation systems such as the primary suspension system, engine mounting system and the cab mounting system. A rigid-flexible coupling model for the truck was built and analyzed in multi-body environment (ADAMS). The method applying the excitation on the wheels center and the engine mountings in time domain was presented. The variables' effects on the ride performance were studied by design of experiment (DOE). The optimal design was obtained by the co-simulation of the ADAMS/View, iSIGHT and Matlab. It was found that the vertical root mean square (RMS) acceleration and frequency-weighted RMS acceleration on the seat track were reduced about 17% and 11% respectively at different speeds relative to baseline according to ISO 2631-1.
Journal Article

Development of Dual-Fuel Low Temperature Combustion Strategy in a Multi-Cylinder Heavy-Duty Compression Ignition Engine Using Conventional and Alternative Fuels

2013-09-24
2013-01-2422
Low temperature combustion through in-cylinder blending of fuels with different reactivity offers the potential to improve engine efficiency while yielding low engine-out NOx and soot emissions. A Navistar MaxxForce 13 heavy-duty compression ignition engine was modified to run with two separate fuel systems, aiming to utilize fuel reactivity to demonstrate a technical path towards high engine efficiency. The dual-fuel engine has a geometric compression ratio of 14 and uses sequential, multi-port-injection of a low reactivity fuel in combination with in-cylinder direct injection of diesel. Through control of in-cylinder charge reactivity and reactivity stratification, the engine combustion process can be tailored towards high efficiency and low engine-out emissions. Engine testing was conducted at 1200 rpm over a load sweep.
Journal Article

Digging Trajectory Optimization by Soil Models and Dynamics Models of Excavator

2013-09-24
2013-01-2411
Researches for automated construction machinery have been conducted for labor-saving, improved work efficiency and worker's safety, where a tracking control function was proposed as one of the key control system strategies for highly automated productive hydraulic excavators. An optimized digging trajectory that assures as much soils scooped as possible and less energy consumption is critical for an automated hydraulic excavator to improve work efficiency. Simulation models that we used to seek an optimized digging trajectory in this study consist of soil models and front linkage models of a hydraulic excavator. We developed two types of soil models. One is called wedge models used to calculate reaction forces from soils acting on a bucket during digging operation, based on the earth pressure theory. The other is called Distinct Element Method (DEM) model used to analyze soil behaviors and estimate amounts of soils scooped and reaction forces quantitatively.
Journal Article

Improvement of Fuel Consumption of Neat Biofuel Diesel Engine with Reduced Injection Driving Torque

2013-09-24
2013-01-2475
In recent years, trans-esterified vegetable oils have been widely applied to diesel engine in order to suppress greenhouse gas emissions. However, “neat” vegetable oils are expected to be directly used to resolve some difficulties faced in their use, such high viscosity and slightly high fuel consumption. In this study neat linseed oil has been investigated as a neat vegetable oil. It was found to show higher fuel consumption than diesel fuel, however at the same time it showed lower indicated fuel consumption than diesel fuel. These results suggest some increase in engine friction loss in a neat biofuel diesel engine. Studies have been extensively investigated the difference in friction loss and a newly developed “improved deceleration method” has been applied.
X