Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Phase Change Water Recovery for the Space Station Freedom and Future Exploration Missions

1990-07-01
901294
Vapor Compression Distillation technology for phase change recovery of water from wastewater has evolved as a technically mature and energy efficient approach for meeting the National Aeronautics and Space Administration mission needs/goals for the near-term Space Station Freedom Program and future advanced missions such as a Lunar Base and Mars exploration. Water is essential not only for the survival of humans in space, but also for efficient and economical operation for various space stations. Life Systems, Inc., in conjunction with the National Aeronautics and Space Administration, has been developing the Vapor Compression Distillation Phase Change Concept. During the development of this technology over the past 17 years an extensive engineering and scientific database has been assembled.
Technical Paper

Electrochemical Ozone Generator for In Situ Sterilization of Potable Water and Wastewater

1993-07-01
932177
Disinfection of water and wastewater was proven to be feasible using a Breadboard Electrochemical Ozone Generator (EOG). A static gas/liquid separator, containing a microporous, hydrophobic membrane, was tested with the Breadboard EOG, and was found to increase the concentration of the ozone (O3) dissolved in the water. Distilled water and selected wastewaters were disinfected, achieving dissolved O3 concentrations up to 3 mg/L. The hardware is capable of operating in 0-g and 1-g environments. An end-item Electrochemical Ozonator (EO), sized to disinfect 116 kg of potable water per day, was projected to weigh 1.2 kg and consume only 18.5 W.
Technical Paper

An Update of the Readiness of Vapor Compression Distillation for Spacecraft Wastewater Processing

1992-07-01
921114
Vapor Compression Distillation technology has proved its readiness as a spacecraft wastewater processor as evidenced by selection of this technology for the Urine Processor Assembly aboard Space Station Freedom. In conjunction with Boeing Aerospace Company and the National Aeronautics and Space Administration, Life Systems' technical team has made significant advances in both flight hardware design and software operational aspects. The flight hardware design has focused on Orbital Replacement Unit (ORU) design, ORU rack packaging and ORU weight reduction. On orbit operational aspects of software include operating modes, process control loops, fault detection and fault isolation. These improvements are further indication that Vapor Compression Distillation will be the key to providing wastewater regeneration essential for long-term human survival in space.
Technical Paper

A Comparison of Russian and American Oxygen Generation Hardware

1994-06-01
941250
Cooperation between Russia and the United States on manned spaceflight has led to unprecedented openness, resulting in the ability to now compare the characteristics of environmental control/life support hardware selected to generate oxygen (O2) by water electrolysis for space station applications. This comparison in this paper focuses on the characteristics that have the greatest effect on the cost of assembling and maintaining the hardware in space: launch weight, volume, power consumption, resupply requirements and maintenance labor.
Technical Paper

An Integrated Regenerative Air Revitalization System for Spacecraft

1982-02-01
820846
Future long-duration manned space missions will require efficient methods for maintenance of viable atmosphere in spacecraft crew cabins. Life Systems, working with NASA, has been developing an integrated regenerative Air Revitalization System (ARS) for removal of carbon dioxide and water vapor and replenishment of oxygen and nitrogen for spacecraft atmosphere. A one-person-capacity experimental ARS (ARX-1) has recently been developed and tested. This paper describes the ARS concept, prior development efforts, design and hardware features of the ARX-1, testing completed, the current test program, and a preliminary design for a one-person flight prototype ARS.
Technical Paper

Fluid Systems Servicing and Leak Check for the International Space Station

2000-07-10
2000-01-2310
There is an assortment of hardware designed to work together to provide fluid servicing, seal leak checking and other plumbing-type services on the International Space Station (ISS). The Fluid Systems Servicer (FSS) is designed to drain, purge, fill, and recirculate fluids for on-orbit start-up, scheduled and unscheduled maintenance. The FSS will utilize space vacuum for purging operations on-orbit via the Vacuum Access Jumpers (VAJ), thus providing vacuum back-filling and static leak check capability with minimal power consumption. The FSS services Internal Thermal Control Systems (ITCS) and Environmental Control & Life Support (ECLS) System hardware in the pressurized elements of the ISS. The FSS gas/liquid separator fulfills an additional design requirement of removing entrained gas from fluids by means of a static membrane separator. The FSS and some ancillary equipment also perform Seal Leak Check (SLC), pressure removal and equalization, and window assembly maintenance on ISS.
X