Refine Your Search

Topic

Search Results

Viewing 1 to 18 of 18
Standard

Information on Brake-By-Wire (BBW) Brake Control Systems

2013-04-22
HISTORICAL
AIR5372
A panel of the SAE A-5A Committee prepared this SAE Aerospace Information Report (AIR). The document describes the design approaches used for current applications of Brake-by-Wire (BBW) control systems that are used on commercial and military airplanes. The document also discusses the experience gained during service in the commercial and military environments, and covers system, ergonomic, hardware, and development aspects. The treatment includes the lessons that have been learned during application of the technology. Although there are a variety of approaches that have been used in the design of BBW systems, the main focus of this document is on systems that use the electro-hydraulic method of control. The overall range of implementations is briefly described in 2.3. Sections 3, 4, and 5 describe the electro-hydraulic method in detail.
Standard

Assessment of Aircraft Wheel Sealing Systems

2020-09-17
CURRENT
ARP5146
This SAE Aerospace Recommended Practice (ARP) is intended to provide guidance on verifying the integrity of inflation pressure sealing systems of aircraft wheel/tire assemblies.
Standard

MAINTAINABILITY RECOMMENDATIONS FOR AIRCRAFT WHEELS & BRAKES

1993-04-01
HISTORICAL
ARP813
This document suggests the maintainability features which should be considered in the design of aircraft wheels and brakes. The effect on such factors as cost, weight, reliability, and compatibility with other systems should be considered before incorporation of any of these features in the design.
Standard

MAINTAINABILITY RECOMMENDATIONS FOR AIRCRAFT WHEELS AND BRAKES

1993-04-01
HISTORICAL
ARP813A
This ARP suggests the maintainability features which should be considered in the design of aircraft wheels and brakes. The effect on such factors as cost, weight, reliability, and compatibility with other systems should be considered before incorporation of any of these features in the design.
Standard

Unique Wheel and Brake Designs

2022-09-08
CURRENT
AIR5388
This SAE Aerospace Information Report (AIR) has been prepared by a panel of the SAE A-5A Committee and is presented to document unique design approaches used for aircraft wheels and brakes.
Standard

Overpressurization Release Devices

2007-08-09
HISTORICAL
ARP1322A
This SAE Aerospace Recommended Practice (ARP) specifies the minimum design and test recommendations for aircraft tubeless tire and wheel overpressurization release devices to protect from possible explosive failure of the contained air chamber due to overinflation. This device will not protect against flash fire explosive conditions within the air chamber which may occur due to extremely overheated brakes. To protect against this condition, nitrogen or other inert gas should be used for inflation.
Standard

OVERPRESSURIZATION RELEASE DEVICES

1975-01-01
HISTORICAL
ARP1322
This ARP specifies the minimum design and test recommendations for aircraft tubeless tire and wheel overpressurization release devices to protect from possible explosive failure of the contained air chamber due to overinflation. This device will not protect against flash fire explosive conditions within the air chamber which may occur due to extremely overheated brakes. To protect against this condition, nitrogen or other inert gas should be used for inflation.
Standard

Overpressurization Release Devices

2018-06-21
CURRENT
ARP1322C
This SAE Aerospace Recommended Practice (ARP) specifies the minimum design and qualification test recommendations for aircraft wheel overpressurization release devices used with tubeless aircraft tires to protect from possible explosive failure of the contained inflation chamber due to overinflation. Devices of this type provide a means, but not the only means, for showing compliance to Subsection 25.731(d) of Part 25 of Title 14 of the Code of Federal Regulations. Devices of this type will not protect against flash fire explosive conditions within the inflation chamber which may occur due to extremely overheated brakes or spontaneous combustion caused by a foreign substance within the inflation chamber. To help protect against this condition, nitrogen (N2) or other inert gas should be used for inflation.
Standard

Overpressurization Release Devices

2014-08-20
HISTORICAL
ARP1322B
This SAE Aerospace Recommended Practice (ARP) specifies the minimum design and test recommendations for aircraft wheel overpressurization release devices used with tubeless aircraft tires to protect from possible explosive failure of the contained air chamber due to overinflation. Devices of this type provide a means, but not the only means, for showing compliance to Subsection 25.731(d) of Part 25 of Title 14 of the Code of Federal Regulations. Devices of this type will not protect against flash fire explosive conditions within the air chamber which may occur due to extremely overheated brakes. To help protect against this condition, nitrogen or other inert gas should be used for inflation.
Standard

Minimum Performance Requirements for Transport Airplane Wheel and Brake Assemblies Using Electric Power Actuation

2012-07-11
CURRENT
AS5663A
In lieu of TSO-C135, this SAE Aerospace Standard (AS) prescribes the minimum performance standards for wheels, brakes, and wheel and brake assemblies using electric power actuation for transport category (14 CFR Part 25) airplanes. Testing is limited to that necessary to establish minimum performance related to strength, robustness, stopping capability, and energy absorption to ensure measurable, repeatable industry accepted standards for these aspects of wheel and brake performance. The test parameters associated with electric braking actuation are defined around the state of the technology at this time, typically comprised of an Electro-Mechanical Actuator (EMA) controlled by a control system delivering electric power and effecting motor control.
Standard

Minimum Performance Requirements for Transport Airplane Wheel and Brake Assemblies Using Electric Power Actuation

2012-05-09
HISTORICAL
AS5663
In lieu of TSO-C135, this SAE Aerospace Standard (AS) prescribes the minimum performance standards for wheels, brakes, and wheel and brake assemblies using electric power actuation for transport category (14 CFR Part 25) airplanes. Testing is limited to that necessary to establish minimum performance related to strength, robustness, stopping capability, and energy absorption to ensure measurable, repeatable industry accepted standards for these aspects of wheel and brake performance. The test parameters associated with electric braking actuation are defined around the state of the technology at this time, typically comprised of an Electro-Mechanical Actuator (EMA) controlled by a control system delivering electric power and effecting motor control.
X