Refine Your Search

Topic

Author

Affiliation

Search Results

Book

Auto Brand

2014-01-03
The car - once everybody's dream and a key status symbol in most countries and cultures - has been extensively questioned in the last decades and in the last few years particularly. Urbanization, traffic congestion, pollution problems, heavy reliance on scarce oil supplies, safety issues and ever-growing competition, have all provided significant business challenges for the automotive industry. Many car manufacturers have had to fundamentally rethink their design, brand and marketing strategies to thrive in a savvy, consumer-led culture, and markets that are becoming increasingly restrictive in size and opportunity.
Book

Transport Revolutions

2008-01-01
This book sets out the challenges that will soon threaten modern society's dependence on low-cost transport in light of the problems posed by oil supply and climate change. It proposes organizational and technical innovations that could ensure effective, secure movement of people and goods in ways that minimize environmental impacts and make the best use of renewable sources of energy. The authors conclude that transport in the first half of the 21st century will feature at least two revolutions. One will involve the use of electric drives rather than internal combustion engines. The other will involve powering these drives directly from the electric grid rather than from on-board fuel. The authors also address revolutions in marine transport and aviation and analyze the politics and business of transport and how these will undergo profound change in the decades ahead.
Standard

Electric Drivetrain Fluids (EDF)

2019-04-24
WIP
J3200
This SAE Information Report is to assist those concerned with lubricants used in drivetrain components powered by electric powerplants. The information contained herein will be helpful in understanding the terms related to the properties of a lubricant used in electric drivetrains.
Video

SAE Demo Day in Tampa - City and State Perspectives

2018-08-14
Dramatic changes in transportation are coming. Cities and states looking to be at the forefront and reap the benefits, need an engaged and informed citizenry. Hear how the SAE Demo Day in Tampa supported Florida's AV initiatives and can benefit states nationwide.
Video

SAE Demo Day in Tampa - Highlights

2018-08-14
In May 2018, SAE International in partnership with THEA and leading AV technology companies gave citizens in Tampa a chance to test ride the future. The event included a pre- and post-ride survey, a ride in an automated vehicle, interactive displays and engagement with industry experts. See highlights of the event and feedback from participants.
Standard

Definition and Measurement of Beam Axle Efficiency

2019-12-04
WIP
J3218
This SAE Recommended Practice covers beam axles used in passenger car and light-duty truck applications. Beam Axles utilize differentials which are of the open, limited slip, locking or spool types, although other configurations are possible
Technical Paper

Tire/Road Interface Airborne Noise Characteristics Generation

1999-05-17
1999-01-1731
In recent years there has been much interest in problems involving the noise prediction and reduction inside and outside the vehicle. Tire/road exterior noise has been considered to be the major vehicle exterior noise source. However, this paper describes an investigation into the characteristics of the air pumping noise mechanism in terms of source locations and directionality. Some rubber tire/road air pumping noise measurements are presented, whereas some predicted results are computed based on the boundary element method (BEM) to display some parameters which are found to be difficult to be obtained experimentally.
Technical Paper

Using Simulation to Design a Lean Material Delivery System in an Automotive Body Shop

1999-05-10
1999-01-1643
A simulation study was undertaken to help design a material delivery system to support lean manufacturing in an automotive body shop. Since this was a greenfield facility, simulation analysis was employed in the very early design phase of the system to determine and quantify the limiting parameters of the proposed lean material delivery system. The simulation analysis evolved with the changes in the design parameters and assumptions of the facility. The updated information from the simulation model helped the designers to evaluate alternate concepts and understand some parameters better such as, traffic congestion, manpower, and storage area requirement.
Technical Paper

Numerical Investigation of Vehicles Aerodynamics through Driving Tunnels

2000-04-02
2000-01-1579
Due to the rapid development in many parts of Egypt, construction of a wide road network is maintaining a rapid pace. But, those roads are affected by the overcrowded big cities. Thus, there is a growing need for driving tunnels to reduce the traffic problems and facilitate transportation. This issue is highly related to economic (fuel consumption) and environmental (pollution and noise) matters. Up to our knowledge, this paper represents the first numerical study to concern driving tunnels in the Middle East. Actual domestic tunnels and vehicles are computationally simulated. Investigations concentrate on flow behavior, especially overall drag coefficient and wake structure behind vehicles. Results show that many parameters, such as tunnel height, and vehicle height and speed, affect the aerodynamic characteristics through driving tunnels.
Technical Paper

Analysis of Vehicle Response Data Measured During Severe Maneuvers

2000-05-15
2000-01-1644
During the past few years, the National Highway Traffic Safety Administration's (NHTSA) Vehicle Research and Test Center has generated a plethora of reliable vehicle test data during their efforts to study vehicle rollover propensity. This paper provides further analyses of a small selection of some of the data. The analyses provided here derive in part from the previous work, trying to answer some of the questions spawned by earlier analyses. The purpose of this paper is to introduce several new concepts to the study of vehicle roll stability and provide case studies using the results available from the NHTSA testing. Results from several severe maneuvers are studied in detail to gain understanding of vehicle response in these cases.
Technical Paper

Fundamental Physics Behind New Suspension Concept for Automobiles

2000-05-01
2000-01-1647
The Transverse Leaf suspension with Superior Roll Axis is a new suspension concept for automobiles. It enables the load transfer during a turn to be more evenly redistributed between the two wheels on the same axle thus optimizing its tires lateral force capabilities. The TLSRA concept is made up of a single transverse leaf spring linking the middle of the sprung mass to the outer end of 2 transverse suspension arms per axle. Those transverse arms are mounted close to the middle of the sprung mass with their attachment points located above the mass centroïd. Each wheel assembly is mounted directly onto the free end of its respective suspension arm. Because body roll is now counteracting vertical load transfer during transient and permanent operating conditions, this suspension enables designers to keep spring stiffness low without compromising road handling.
Technical Paper

Development of Active-Traction Control System

2000-05-01
2000-01-1636
Active-TRAC (A-TRAC) is the system for off-road 4WD vehicles. This system consists of independent four wheel brake control system and engine torque control system. This system applies the brake to any spinning wheel, and sends torque to the other wheels with grip. Therefore, the vehicle gets strong LSD(Limited Slip Differential) effect, and it has the same traction performance as a center and rear differential locked vehicle. Because the vehicle with A-TRAC does not have a differential locking mechanism, it no longer has the phenomenon of tight corner braking, and it frees a driver from operating the differential locking system. Therefore anyone can easily enjoy off-road driving with A-TRAC.
Technical Paper

Using μ Feedforward for Vehicle Stability Enhancement

2000-05-01
2000-01-1634
Vehicle stability augmentation has been refined over many years, and currently there are commercial systems that control right/left braking and throttle to create vehicles that remain controlled when road conditions are very poor. These systems typically use yaw rate and lateral acceleration in their control philosophy. The tire/road friction coefficient, μ, has a significant role in vehicle longitudinal and lateral control, and there has been associated efforts to measure or estimate the road surface condition to provide additional information for the stability augmentation system. In this paper, a differential braking control strategy using yaw rate feedback, coupled with μ feedforward is introduced for a vehicle cornering on different μ roads. A nonlinear 4-wheel car model is developed. A desired yaw rate is calculated from the reference model based on the driver steering input.
Technical Paper

A New Method for Determining Tire Traction on Ice

2000-05-01
2000-01-1640
The development of tires traction models is very important for tire mechanics and automobile dynamics. Based on principle of thermal balance and theory of frictional melting, a new method for determining tire traction on an iced highway was presented. It was shown that the computed results could compare with the available test results. The advantages of a car with CTI-DS travelling on ice or compact snow were demonstrated in theory and in experiment. It was recommended that an automobile be operating at lower inflation pressures to increase tire traction force on the above highways.
Technical Paper

Improving the Ride & Handling Qualities of a Passenger Car via Modification of its Rear Suspension Mechanism

2000-05-01
2000-01-1630
This paper presents the results of a recent project of IKCo’s research center to modify the Paykan 1600’s rear suspension mechanism with the purpose of improving the car’s comfort, stability and handling qualities. The car was originally equipped with a solid rear axle with leaf springs. By replacing the original mechanism with a three-link mechanism with panhard bar and coil springs, the ride comfort and handling characteristics of the car were noticeably improved.3-D, nonlinear ride and handling models were developed and analyzed to determine the important kinematics and dynamic effects of the new mechanism on vehicle responses. To verify the analytical results, subjective tests were carried out on the vehicle. The results of these tests demonstrated remarkable improvement of the dynamics behavior of the car.
Technical Paper

Design of Front Wheel Active Steering for Improved Vehicle Handling and Stability

2000-05-15
2000-01-1619
Active steering has received lot of attention in the recent years because of the development of vehicle stability control systems and intelligent vehicle highway systems. Active steering systems allow for correction of the steer angle to achieve the desired vehicle yaw gain. The proposed system can be easily integrated with the vehicle stability control systems that use braking to control the vehicle yaw gain. The paper describes the concept of front wheel active steering system and the design techniques involved in order to achieve the desired performance from the system. The design techniques demonstrated in the paper do not address noise (gear rattles, motor noise, gear whine etc), electromagnetic compatibility and thermal issues related to DC motor and digital controller.
Technical Paper

Investigation of Package Bearings to Improve Driveline Performance

2000-06-19
2000-01-1785
The tapered roller bearings employed in axle centers for the pinion support are critical components in determining the noise, fuel economy and reliability characteristics of the vehicle. They represent a relatively complex mechanical and tribological system, with special requirements from the stiffness, lubrication and heat transfer points of view. This paper brings a contribution to the investigation of the intricate dependency between design parameters, environmental factors and the resultant performance of a package bearing in an integral double cup configuration. Axial compactness, reduced weight, and superior rigidity are only few of the multiple advantages recommending this type of double row bearings for automotive driveline applications. Different aspects related to the tapered roller bearing setting are analyzed in a theoretical and experimental manner, also under the consideration of the manufacturing and assembly processes.
Technical Paper

Motorcycle Suspension Development Using Ride Comfort Analysis with a Laboratory Test System

1999-09-28
1999-01-3276
An analytical approach to developing motorcycle suspensions is presented. Typical uncontrolled and subjective evaluations that place limits on suspension development are curtailed through the use of a laboratory-based road simulation technique, which evaluates vehicle ride quality. Ride comfort is calculated using a specifically tailored NASA model after primary and secondary frequency regimes have been established for this type of motorcycle. Correlation between road and laboratory simulation is measured and compared to the road data variance. A designed experiment evaluates changes in ride quality as a function of suspension and tire pressure adjustments. Various suspension settings are repeated on the simulator and corresponding ride numbers are calculated for both environments. An analysis is performed to correlate ride quality improvements on the simulator with ride quality improvements in the field.
Technical Paper

Benefits of Profiling Tapered Roller Bearings - Matching Driveline Component Performance to the Demands of Higher Horsepower Engines of Heavy Duty Trucks

1999-11-15
1999-01-3767
The heavy-duty trucking industry is continuing to move toward the use of higher horsepower engines. Engines exceeding 450 horsepower have become increasingly popular, with 500 - 600 horsepower engines expected to share a significant portion of the truck engine market in the next decade {Reference 1}. Sometimes these higher horsepower engines are used with existing gross combined vehicle weight, simply to increase the speed at which payloads are delivered. However, when higher engine horsepower is used to transport increased payloads, the result is higher loads and stresses on all driveline components between the engine and the wheels. All components downstream of the engine could be adversely affected.
X