Refine Your Search




Search Results


SAE Vehicle Electrification: February 11, 2014

Inside the cell walls The high cost of lithium-ion batteries is a prison that has largely kept electric vehicles off the street; the keys to their release are more effective—but not more expensive—cell chemistries.

The Business of Winning

Motorsport Valley® is the dynamic motorsport industry cluster of companies whose global influence is as strong as ever. Learn more about the innovative technologies which continue to deliver world-beating success in the outstanding MIA publication - The Business of Winning. In-depth, up-to-the-minute features and case studies fill the full-colour 100-plus pages. The Business of Winning analyses the pioneering ideas, processes and capabilities that characterize Motorsport Valley® and UK high-performance engineering and features exciting images which bring the story to life. The Business of Winning, supported by UK Trade & Investment, focuses on the successful companies that comprise Motorsport Valley and highlights their presence at the forefront of the global motorsport industry. This is THE case-study source for customers, business leaders, researchers, students and fans.

Minimum Performance Standard for a Cabin Occupant Personal Oxygen Dispensing Unit for use from 40,000 to 45,000 Feet

This Aerospace Standard (AS5727) will provide the basis for a certification approach and contain the methods or criteria for verification of performance required of Oxygen Dispensing Units for use by cabin occupants in the range of 40,000 to 45,000 ft. cabin altittude. 1.1 Purpose - This AS is intended to identify the performance required of Personal Oxygen Dispensing Units in the range of 40,000 to 45,000 ft.

Human Engineering Considerations with Implementation of Aided Flight Vision forVertical Flight Platforms All Weather Operations

Identify the phase of flights that can take benefit of Aided Visual Flight for the various missions of helicopters both VFR and IFR such as: Commercial Air Transport Operations offshore and onshore, EMS (Air ambulance), Law enforcement (Operations with Specific Approvals),Search and Rescue (SAR) operations both in Maritime and Mountainous operations The Aided Flight should be considered with various levels of on-boarded sensor technology and its performance such as, but not limited to: NVG, Addition of Axial IR Sensor (with minimum performance to define), Potential use of orientable search light (night VFR) and other situation awareness means like HTAWS, SVS, and sensor like Radio Altimeter including the display mean head-down or head worn that influence operational aspects.

Guidelines for Human Subject Testing

The aim of this document is to establish a standardized approach for Human Subject Testing considering varying performance requirements of different user groups on aircraft as Flight Crew, Cabin Crew and Passengers. The document will provide guidance for definition of significant topics relevant to equipment and system certification. The document will include information regarding ethical aspects, criteria to select human subjects for testing, safety of test subjects, requirements to medical personnel to attend tests and in particular if humans are exposed to elevated altitudes. Recommendation will be provided regarding test result monitoring and data validity

Compatibility of Turbine Lubricating Oils

This method is used for determining the compatibility of a candidate lubricant with specific reference lubricants. The reference lubricants will typically be mandated by the product specification against which the candidate lubricant is being compared. This method is based on Federal Standard 791 method 3403 and Defence Standard 05-50 (Part 61) method 24, incorporating the modifications called for in SAE AS5780.

Quick Connect Fluid Coupling Specification for Water/Glycol Coolant System Interconnect

This SAE Recommended Practice defines the dimensional characteristics and minimum performance requirements for quick connect couplings between flexible tubing or hose and rigid tubing or tubular fittings used in glycol/water coolant systems. This document applies to automotive and truck applications under the following conditions: a. Gasoline, diesel, hybrid, and electrical propulsion cooling systems. b. Operating pressure up to 206 kPa, 2.06 bar, (30 psig). c. Operating temperatures from -40 °C (-40 °F) to 125 °C (260 °F). Quick connect couplings function by joining the connector to a mating end form typically without the use of tools. The requirements stated in this document apply to new connectors in assembly operations unless otherwise indicated.

SAE Demo Day in Tampa - Highlights

In May 2018, SAE International in partnership with THEA and leading AV technology companies gave citizens in Tampa a chance to test ride the future. The event included a pre- and post-ride survey, a ride in an automated vehicle, interactive displays and engagement with industry experts. See highlights of the event and feedback from participants.
Technical Paper

Application of Shape Memory Heat Engines to Improving Vehicle Fuel Economy

Shape memory materials undergo temperature-induced martensitic phase transformations that involve reversible dimensional changes. In performing these changes in shape, the shape-memory material is able to do work against external constraints, and this is the basis for shape-memory low-temperature heat engines. The transformation temperatures on heating and cooling are often not very different (little hysteresis) and are well defined and reproducible. Furthermore, these temperatures can be adjusted by varying the composition of the shape memory alloy. Internal combustion engines dissipate approximately two-thirds of the fuel energy as heat to the exhaust and coolant systems. A low-temperature heat engine could convert a fraction of this heat energy to useful work. This paper discusses the conceptual basis for the application of shape memory heat engines to internal combustion engine powered vehicles. Metallurgical and thermodynamic factors are discussed, as well as engine efficiency.
Technical Paper

Simulors, An Innovative Tool for Molds Development

Mold designers and foundrymen spend a lot of time in developing molds without knowing exactly the phenomena which take place inside. Simulor, which has been used in an industrial environment for two years, offers the solution to make foundrymen understand what happens during the filling of the mold and the solidification of the part. Based on navier-stokes and heat transfer equations, simulor provides speed distribution and metal front evolution in the cavity and thermal map in the mold and the part. Some examples with different metals (cast iron, aluminum alloy) cast with various processes (sand or die casting, low pressure or gravity casting) will be given. This new tool will given foundrymen the opportunity to test the mold before having it machined and will also allow reduction in development delays.
Technical Paper

Actuation and Fastening With Shape Memory Alloys in the Automotive Industry

As a result of a phase transformation, shape memory alloys can change their shape when the temperature changes. This unusual effect can be utilized in actuation and fastening components for automotive applications. Springs made from Ni-Ti shape memory alloys change their rate in a predetermined temperature range due to a significant change in the elastic modules of the material. They can be used as sensor-actuators in pressures control valves or oil cooler by-pass valves in automatic transmissions or to compensate for oil viscosity changes in shock absorbers or thermal expansion of dissimilar materials in gear boxes. If the recovery is constrained, i.e., shape memory element is physically prevented from returning into its original shape, a potentially high stress is generated. This effect is used in fastener rings. Fasteners made from Ni-Ti alloys provide high reliability and easy installation for braid terminations, locating of shaft mounted components, connectors and hose clamps.
Technical Paper

Ceramic Coating for Aluminum Engine and Components

The trend toward lighter vehicles for improved performance has recently introduced the use of aluminum and plastic materials for vehicle bodies and drive trains. In particular, the aluminum alloy block foar engine application is certain to reappear. The soft aluminum cylinder liner will require additional treatment before acceptance. Three possible approaches appear to solve the aluminum cylinder liner dilemma. These approaches are: 1) use of high silicon aluminum such as the 390 aluminum; 2) insert or cast steel liners into the aluminum engine block; and 3) ceramic coat the low cost standard aluminum engine block. Each has known advantages and disadvantages. It is the purpose of this paper to present the merits of option 3, the ceramic coated aluminum cylinder bore, from the standpoint of low weight, cost, and tribological effectiveness. The advantages of approaches 1) and 2) are obvious. High temperature after treatment of the ceramic engine components is not required.
Technical Paper

Engine Control System for Lean Combustion

In order to achieve lean burn engine control system, it is necessary to develop high accuracy air fuel ratio control technology including transient driving condition and lean burn limit expansion technology. This paper describes the following. 1 The characteristics of the transient response of the fuel supply are clarified when various kinds of air flow measuring methods and fuel injection methods are used. 2 To achieve stable combustion in lean mixture, fine fuel droplet mixture, whose diameter is less than 40 μm, needs to be supplied.

Key Lubricant Performance Properties for Advanced Aircraft Engines

The scope of this document is limited to the lubrication system of a conceptual high performance aircraft turbine engine. This document will not present or disclose any specific design data leading to the specific formulation of an advance engine lubricant or that of an advanced engine. General trends are presented based upon current literature and observations of lubricant/engine experience.
Technical Paper

Calculating Partial Contribution Using Component Sensitivity Values: A Different Approach to Transfer Path Analysis

Transfer Path Analysis (TPA) is a widely used methodology in Noise, Vibration and Harshness (NVH) analysis of motor vehicles. Either it is used to design a vehicle from scratch or it is applied to root cause an existing NVH problem, TPA can be a useful tool. TPA analysis is closely related to the concept of partial contribution. The very basic assumption in TPA is that the summation of all partial contributions from different paths constitutes the total response (which could be either tactile or acoustic). Another popular concept in NVH analysis of vehicles is the component sensitivity. Component sensitivity is a measure of how much the response changes due to a change in one of the components of the system, i.e., the thickness of a panel or elastic rate of an engine mount. Sensitivity rates are more popular among CAE/Simulation community, simply because they are reasonably easy to calculate using mathematical models.
Technical Paper

Door System Design for Improved Closure Sound Quality

Door closing sounds are an important element of the craftsmanship image of a vehicle. This paper examines the relationship between closure sound quality and door system design. The perception of door closing sound quality is shown to be primarily related to it's loudness and sharpness. Of the two, sharpness is more important than loudness. Other factors, like ring-down may also affect closure sound quality. The door system is made up of a number of components. The most important in terms of sound quality are the door and body structure, latch, and door seals. Each of these are classified as either a sound source, a transmission path or a sound radiator. Methods for improving the design of these components for good closure sound quality are discussed in some detail.