Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Bounce-Overs: Fixed Object Impacts Followed by Rollovers

2004-03-08
2004-01-0334
In this study, U.S. crash data was analyzed to better understand bounce-over rollovers. Crash data was reviewed to evaluate the distribution of bounce-over crashes and injuries, initiation objects and impact locations. In passenger cars, bounce-over crashes account for 8.4% of rollovers but involve 36.2% of the seriously injured belted drivers. Most bounce-overs are initiated by contact with narrow objects such as a pole, tree or barrier, or large objects such as a ditch or embankment. Contact often occurs in the front of the vehicle. After contact, the vehicle yaws and rolls, and serious injuries are often sustained to the head. Based on field data, a laboratory test was developed to simulate a narrow object bounce-over. The test consists of towing a vehicle laterally on a fixture towards a stationary, angled barrier resting in gravel. The moving fixture is decelerated and the vehicle is released. The vehicle front impacts the edge of the barrier, simulating a narrow object impact.
Technical Paper

History of Safety Research and Development on the General Motors Energy-Absorbing Steering System

1991-10-01
912890
This paper covers the development of the General Motors Energy Absorbing Steering System beginning with the work of the early crash injury pioneers Hugh DeHaven and Colonel John P. Stapp through developments and introduction of the General Motors energy absorbing steering system in 1966. evaluations of crash performance of the system, and further improvement in protective function of the steering assembly. The contributions of GM Research Laboratories are highlighted, including its safety research program. Safety Car, Invertube, the biomechanic projects at Wayne State University, and the thoracic and abdominal tolerance studies that lead to the development of the Viscous Injury Criterion and self-aligning steering wheel.
Technical Paper

Laboratory Study of Factors Influencing the Performance of Energy Absorbing Steering Systems

1982-02-01
820475
The study was directed toward improving our understanding how postcrash column compression and steering wheel deformation relate to the driver interaction with an energy absorbing steering system during automotive collisions. Frontal sled tests conducted at 19–37 km/h investigated the Part 572 antropomorphic dummy interaction with a ball-sleeve column steering assembly over a range of column angles and surrogate postures. Neither column compression nor steering wheel deformation correlated with the mechanical severity of the test surrogate interaction with the steering system. The steering wheel deformed before the column compressed and the degree of wheel deformation strongly depended on the surrogate load distribution, the steering wheel being an important energy absorbing element.
X