Refine Your Search

Topic

Author

Affiliation

Search Results

Magazine

SAE Vehicle Electrification: February 11, 2014

2014-02-11
Inside the cell walls The high cost of lithium-ion batteries is a prison that has largely kept electric vehicles off the street; the keys to their release are more effective—but not more expensive—cell chemistries.
Standard

Performance based packaging standard for lithium batteries as cargo on aircraft

2016-03-18
WIP
AS6413
This standard is intended to demonstrate and document the control of the potential hazards from lithium cells or batteries (UN 3090 and 3480) when transported as cargo on aircraft. [still need to identify if we are addressing global (external fire) or local (battery internal failures)] This standard addresses the need to control the hazards which might arise from a failure from an individual cell by containing the hazards within the package. This specific hazards addressed within this standard are: • Uncontrolled fire • Rapid overpressure pulse within compartment
Standard

ARC Fault Interrupter, 270 VDC

2019-04-27
WIP
AS6087
Develop a standard for testing and evaluating direct current arc fault detection and interruption technologies.
Technical Paper

Advanced Lithium Solid State Battery Developments

2000-04-02
2000-01-1588
This paper presents a summary of a recent conference entitled Advanced Lithium Solid State Batteries Workshop that was held on July 13–15, 1999. The conference was sponsored by the Department of Energy's Office of Advanced Automotive Technologies, and the Office of Basic Energy Sciences' (BES) Division of Chemical Sciences. This paper presents a summary of the results and recommendations from the conference, including: A review of current research on solid state electrolytes and their interfaces with an emphasis on both applied and basic studies. The research includes theoretical studies of solid polymer electrolytes (SPEs), lithium ion transport in SPEs, and simulations of the electrolyte–cathode interface. Experimental results are presented on ion transport phenomena in SPEs (NMR and X–ray) and mechanical stresses on electrodes, among other topics.
Technical Paper

A Review of Battery Exchange Technology for Refueling of Electric Vehicles

2000-04-02
2000-01-1586
The limited energy storage and long recharge time of electric vehicle batteries have motivated several alternatives to in-vehicle slow charging. Solutions generally fall into three categories: (1) fast charging, in which batteries are charged in-vehicle at an accelerated rate, (2) battery material reloading or refueling, in which the energy-carrying elements of the battery are physically replaced or replenished, and (3) battery interchange, involving the complete exchange of the battery pack, usually with the aid of some semi-automated mechanism. Among these options, the last, battery interchange, has tended to receive the least industry attention, but has been an expansive topic of invention and novel deployment.
Technical Paper

Fundamental Physics Behind New Suspension Concept for Automobiles

2000-05-01
2000-01-1647
The Transverse Leaf suspension with Superior Roll Axis is a new suspension concept for automobiles. It enables the load transfer during a turn to be more evenly redistributed between the two wheels on the same axle thus optimizing its tires lateral force capabilities. The TLSRA concept is made up of a single transverse leaf spring linking the middle of the sprung mass to the outer end of 2 transverse suspension arms per axle. Those transverse arms are mounted close to the middle of the sprung mass with their attachment points located above the mass centroïd. Each wheel assembly is mounted directly onto the free end of its respective suspension arm. Because body roll is now counteracting vertical load transfer during transient and permanent operating conditions, this suspension enables designers to keep spring stiffness low without compromising road handling.
Technical Paper

Speed-Sensorless Control of Induction Motors for Electric Vehicles

2000-04-02
2000-01-1603
An electric bus system has been operating in the downtown area of Chattanooga, Tennessee for more than four years. The buses use traditional hard-switched IGBT inverters driving special induction motors with a speed sensor (tachometer) and two embedded flux-sensing windings to provide rotor speed and flux information to the motor controller for implementation of high performance field oriented control (vector control). The induction motor is oil-cooled and equipped with an internal planar gear reduction. The current system has experienced failures in both speed sensors and flux sensors because they are unreliable, susceptible to EMI and must operate in a hostile environment created by oil leaks. A speed- and flux-sensorless induction motor drive system with a new 100 kW soft-switching inverter has been implemented to replace the existing system.
Technical Paper

Advanced Automotive Technologies Energy Storage R&D Programs at the U.S. Department of Energy-Recent Achievements and Current Status

2000-04-02
2000-01-1604
The United States supports an active research and development (R&D) program to develop electric and hybrid vehicle technologies and accelerate their commercialization. The U.S. Department of Energy (DOE), through its Office of Advanced Automotive Technologies (OAAT), supports the development of advanced energy storage and power electronics technologies, fuel cells, advanced direct-injection engines, vehicle systems, lightweight materials, and fuels. Much of this R&D directly supports the Partnership for a New Generation of Vehicles (PNGV), a landmark partnership between the U.S. Federal Government and automakers with the goal of developing a six-passenger family sedan with up to 80 miles per gallon (mpg) fuel economy by 2004. In these efforts, the DOE is working closely with its national laboratories, the auto industry and its suppliers, other government agencies, universities, and innovative small businesses. The Department continues to collaborate closely with the U.S.
Technical Paper

Ovonic Power and Energy Storage Technologies For the Next Generation of Vehicles

2000-04-02
2000-01-1590
The next generation of vehicles will see many new concepts involving propulsion technologies currently being developed by many of the worlds automakers and suppliers. These concepts will include pure electric vehicles (EV), hybrid electric vehicles (HEV) with advanced internal combustion engines and fuel cell hybrid electric vehicles (FCHEV). These new vehicle concepts all need a high-efficiency electrical energy storage system (EESS). This paper describes the basic requirements for the next-generation vehicle technologies and emphasizes the performance of Ovonic technologies as it relates to vehicle requirements. Ovonic Battery Company (OBC) is developing and commercializing enabling technologies for the energy storage for advanced vehicles. Ovonic technologies enable the performance of advanced vehicles to exceed that of today's conventional vehicles while providing additional benefits of clean-air transportation and greatly reduced fuel consumption.
Technical Paper

Government-Industry Partnerships and Environmental and Safety Solutions

2000-04-02
2000-01-1593
The Advanced Battery Readiness Ad Hoc Working Group, a government- industry forum sponsored by the United States Department of Energy, is charged with assessing environmental and safety issues associated with advanced batteries for electric and hybrid electric vehicles. Electric and hybrid electric vehicles require sophisticated advanced battery storage systems. Frequently, toxic, reactive, and flammable substances are used in the energy storage systems. Often, the substances have safety, recycling, and shipping implications with respect to U.S. Environmental Protection Agency and Department of Transportation regulations. To facilitate commercialization, reg-ulations must either be modified or newly developed. Government-industry coordination has expedited needed regulatory changes, and promoted other partnerships to achieve environmental and safety solutions.
Technical Paper

Improving the Ride & Handling Qualities of a Passenger Car via Modification of its Rear Suspension Mechanism

2000-05-01
2000-01-1630
This paper presents the results of a recent project of IKCo’s research center to modify the Paykan 1600’s rear suspension mechanism with the purpose of improving the car’s comfort, stability and handling qualities. The car was originally equipped with a solid rear axle with leaf springs. By replacing the original mechanism with a three-link mechanism with panhard bar and coil springs, the ride comfort and handling characteristics of the car were noticeably improved.3-D, nonlinear ride and handling models were developed and analyzed to determine the important kinematics and dynamic effects of the new mechanism on vehicle responses. To verify the analytical results, subjective tests were carried out on the vehicle. The results of these tests demonstrated remarkable improvement of the dynamics behavior of the car.
Technical Paper

Investigation of Package Bearings to Improve Driveline Performance

2000-06-19
2000-01-1785
The tapered roller bearings employed in axle centers for the pinion support are critical components in determining the noise, fuel economy and reliability characteristics of the vehicle. They represent a relatively complex mechanical and tribological system, with special requirements from the stiffness, lubrication and heat transfer points of view. This paper brings a contribution to the investigation of the intricate dependency between design parameters, environmental factors and the resultant performance of a package bearing in an integral double cup configuration. Axial compactness, reduced weight, and superior rigidity are only few of the multiple advantages recommending this type of double row bearings for automotive driveline applications. Different aspects related to the tapered roller bearing setting are analyzed in a theoretical and experimental manner, also under the consideration of the manufacturing and assembly processes.
Technical Paper

Benefits of Profiling Tapered Roller Bearings - Matching Driveline Component Performance to the Demands of Higher Horsepower Engines of Heavy Duty Trucks

1999-11-15
1999-01-3767
The heavy-duty trucking industry is continuing to move toward the use of higher horsepower engines. Engines exceeding 450 horsepower have become increasingly popular, with 500 - 600 horsepower engines expected to share a significant portion of the truck engine market in the next decade {Reference 1}. Sometimes these higher horsepower engines are used with existing gross combined vehicle weight, simply to increase the speed at which payloads are delivered. However, when higher engine horsepower is used to transport increased payloads, the result is higher loads and stresses on all driveline components between the engine and the wheels. All components downstream of the engine could be adversely affected.
Technical Paper

Automotive Electrical System in the New Millennium

1999-11-15
1999-01-3747
The automotive industry is investigating the change of electrical system voltage in a vehicle from the present 14 volt (12V battery) to 42 volt (36V battery) to integrate new electrical and electronic features. These new features require more amperes, thicker wires, large power devices, and eventually higher cost. The existing 14V system is very difficult to sustain so much content because of constraints of performance, efficiency, cost, packaging space, and manufacture-ability. This paper discusses foreseeable needs moving to a higher voltage, and reasons of 42V selection. It explores benefits and drawbacks when the voltage is changed from 14V to 42V in the areas of wire harness, power electronics, smart switching, power supply, etc. Finally, two typical 42/14V dual voltage architectures are presented for a likely 42V transition scenario.
Technical Paper

TruCharge™ An Advanced System for Supporting Vehicle Batteries and Eliminating Unscheduled Battery Maintenance

1999-11-15
1999-01-3748
There has been minimal innovation in the area of battery test and diagnostic support over the past 20 years. Battery testing has been limited to measurement of terminal voltage, electrolyte specific gravity measurements and load testing. This paper describes an innovative and newly developed battery analyzer/charger unit. The AlliedSignal TruCharge unit is capable of providing accurate state-of-charge (SOC), capacity as well as providing battery defect data via an automated test sequence that takes less than 20 seconds. It charges the battery quickly while minimizing the generation of hazardous hydrogen gas. The underlying technology is described along with the performance features and specifications of the unit. The unit is also capable of recovering sulfated lead acid batteries. The economic and environmental benefits of battery recovery are discussed. This unit is developed based upon extensive market analysis.
Technical Paper

Design of a Multilink Independent Front Suspension for Class A Motor Homes

1999-11-15
1999-01-3731
Motorized recreational vehicles with front axle load ratings that exceed 4,086 kilograms, or 9,000 pounds, are traditionally equipped with rigid I-beam type axles. These axles are used in this application because of their ability to carry high axle loads at a reasonable cost, and their durability history in truck usage. Recently, several manufacturers have used independent type front suspension designs. A multi-link type suspension offers some unique solutions in optimizing the front suspension design. This paper describes the performance goals (i.e. Suspension Design Factors) and tradeoffs in pursuit of the final design. Establishing these SDF’s, achieving them and their relationship to vehicle performance are the focus of this paper. Plots of the kinematic and elastic characteristics are included to illustrate some of the unique features of this multi-link suspension.
Technical Paper

Optimal Mass and Geometric Parameters in Multi-Wheel Drive Trucks for Improved Transport and Fuel Efficiency

1999-11-15
1999-01-3733
To develop better performing vehicles, for ground transportation, it is necessary to improve the theory in vehicle dynamics for choosing suitable mass and geometric parameters for highway as well as for off road trucks. A new approach is required for choosing such optimal mass and geometric parameters. The present paper is devoted to this problem. A new method for synthesis of mass and geometric parameters is introduced here. The method allows us to synthesize the parameters in such way as to provide a vehicle with the best transport efficiency under various road surface conditions. Constraints such as limitations on these parameters, vehicle running modes, mass and geometric parameters are included in the model. Furthermore other constraints for vehicle running abilities which are dependent on mass and geometric parameters, as well as an algorithm for synthesizing mass and geometric parameters are also included in the paper for pre-optimization process.
Technical Paper

Optimal Suspension Damping for Improved Driver- and Road- Friendliness of Urban Buses

1999-11-15
1999-01-3728
Dynamic interactions of urban buses with urban roads are investigated in view of the vibration environment for the driver and dynamic tire forces transmitted to the roads. The static and dynamic properties of suspension component and tires are characterized in the laboratory over a wide range of operating conditions. The measured data is used to derive nonlinear models of the suspension component, and a tire model as a function of the normal load and inflation pressure. The component models are integrated to study the vertical and roll dynamics of front and rear axles of the conventional and modern low floor designs of urban buses. The resulting nonlinear vehicle models are thoroughly validated using the fieldmeasured data on the ride vibration and tire force response of the buses.
Technical Paper

New Traction-Optimized Front Axle Limited-Slip Differential for AWD All-Terrain-Vehicle

2000-03-06
2000-01-1155
An advancement in All-Terrain-Vehicle (ATV) traction control has entered the market place with the debut of the 1999 Bombardier Traxter. The basis for this is the progressive front axle limited-slip differential. The Visco Lok‚ differential provides a speed-sensing progressive traction-optimized characteristic for maximum off-road performance. This paper includes an overview of the vehicle driveline system, functional characteristics of the differential, and torque transfer requirements.
Technical Paper

Alternative Vehicle Power Sources: Towards a Life Cycle Inventory

2000-04-26
2000-01-1478
Three alternatives to internal combustion vehicles currently being researched, developed, and commercialized are electric, hybrid electric, and fuel-cell vehicles. A total life-cycle inventory for an alternative vehicle must include factors such as the impacts of car body materials, tires, and paints. However, these issues are shared with gasoline-powered vehicles; the most significant difference between these vehicles is the power source. This paper focuses on the most distinct and challenging aspect of alternative-fuel vehicles, the power sources. The life-cycle impacts of battery systems for electric and hybrid vehicles are assessed. Less data is publicly available on the fuel cell; however, we offer a preliminary discussion of the environmental issues unique to fuel cells. For each of these alternative vehicles, a primary environmental hurdle is the consumption of materials specific to the power sources.
X