Refine Your Search

Topic

Author

Affiliation

Search Results

Standard

COMMUNICATIONS MANAGEMENT UNIT (CMU) MARK 2

2019-11-26
CURRENT
ARINC758-4
This ARINC Standard specifies the ARINC 758 Mark 2 Communications Management Unit (CMU) as an on-board message router capable of managing various datalink networks and services available to the aircraft. Supplement 4 adds Ethernet interfaces, per ARINC Specification 664 Part 2. This will allow the CMU to communicate with IP based radio transceivers (e.g., L-Band Satellite Communication Systems (Inmarsat SwiftBroadband (SBB) and Iridium Certus), ACARS over IP, AeroMACS, etc.).
Standard

AIRCRAFT DATA NETWORK, PART 1, SYSTEMS CONCEPTS AND OVERVIEW

2019-06-20
CURRENT
ARINC664P1-2
The purpose of this document is to provide an overview of data networking standards recommended for use in commercial aircraft installations. These standards provide a means to adapt commercially defined networking standards to an aircraft environment. It refers to devices such as bridges, switches, routers and hubs and their use in an aircraft environment. This equipment, when installed in a network topology, can optimize data transfer and overall avionics performance.
Standard

GUIDANCE FOR DISTRIBUTED RADIO ARCHITECTURES

2021-07-15
CURRENT
ARINC678
The purpose of this document is to evaluate Communication, Navigation, and Surveillance (CNS) Distributed Radio architectures and the feasibility of distributing the RF and systems processing sections to ensure the following: Reduce cost of equipment Reduce Size, Weight, and Power (SWaP) Ease of aircraft integration Growth capability built into the design Maintain or improve system availability, reliability, and maintainability It provides a framework to determine whether it is feasible to develop ARINC Standards that support CNS distributed radio architectures.
Standard

AIRCRAFT AUTONOMOUS DISTRESS TRACKING (ADT)

2019-08-26
CURRENT
ARINC680
This document describes the technical requirements, architectural options, and recommended interface standards to support an Autonomous Distress Tracking (ADT) System intended to meet global regulatory requirements for locating aircraft in distress situations and after an accident. This document is prepared in response to International Civil Aviation Organization (ICAO) and individual Civil Aviation Authorities (CAAs) initiatives.
Standard

INTERSYSTEM NETWORK INTEGRATION

2021-06-24
CURRENT
ARINC688
The purpose of this document is to provide guidelines for integrating previously standalone cabin systems such as cabin management systems, In-Flight Entertainment (IFE) systems, In-Flight Connectivity (IFC) systems, galley systems, surveillance systems, etc. Resource sharing between systems can reduce airline costs and/or increase functionality. But, as systems expose their internal resources to external systems, the risk of an intrusion that could degrade function and/or negatively expose the supplier’s or airline’s brand increases. This document provides a recommended IP networking design framework between aircraft systems to reduce the operational security threats while still supporting the necessary intersystem routing.
Standard

ONBOARD SECURE WI-FI NETWORK PROFILE STANDARD

2021-06-18
CURRENT
ARINC687
This document defines a standard implementation for strong client authentication and encryption of Wi-Fi-based client connections to onboard Wireless LAN (WLAN) networks. WLAN networks may consist of multi-purpose inflight entertainment system networks operating in the Passenger Information and Entertainment System (PIES) domain, dedicated aircraft cabin wireless networks or localized Aircraft Integrated Data (AID) devices operating in the Aircraft Information Services (AIS) domain. The purpose of this document is to focus on the client devices requiring connections to these networks such as electronic flight bags, flight attendant mobile devices, onboard Internet of Things (IoT) devices, AID devices (acting as clients) and mobile maintenance devices. Passenger devices are not within the focus of this document.
Standard

ROADMAP FOR IPV6 TRANSITION IN AVIATION

2020-06-19
CURRENT
ARINC686
ARINC Report 686 represents the consensus of industry to prepare a roadmap migration from IPv4 to IPv6. This document describes airline objectives (air and ground side when possible) towards the development and introduction of IPv6. There are three distinct elements considered: 1) the applications for addressing aspects 2) the communication network(s) over which the applications are running for the IP protocol level itself and associated features, and 3) the physical link(s) the network(s) interface.
Standard

TIMELY RECOVERY OF FLIGHT DATA (TRFD)

2021-08-06
CURRENT
ARINC681
The difficulty in locating crash sites has prompted international efforts for alternatives to quickly recover flight data. This document describes the technical requirements and architectural options for the Timely Recovery of Flight Data (TRFD) in commercial aircraft. ICAO and individual Civil Aviation Authorities (CAAs) levy these requirements. The ICAO Standards and Recommended Practices (SARPs) and CAA regulations cover both aircraft-level and on-ground systems. This report also documents additional system-level requirements derived from the evaluation of ICAO, CAA, and relevant industry documents and potential TRFD system architectures. It describes two TRFD architectures in the context of a common architectural framework and identifies requirements. This report also discusses implementation recommendations from an airplane-level perspective.
Standard

CABIN ARCHITECTURE FOR WIRELESS DISTRIBUTION SYSTEM

2019-08-13
CURRENT
ARINC820
This document defines a secure Wi-Fi distribution network installed in the aircraft passenger cabin for passenger and crew use. Carry-on Portable Electronic Devices (PEDs) such as smart phones, tablets, and laptops may use this network to access public internet services provided on the aircraft.
Standard

MEDIA INDEPENDENT SECURE OFFBOARD NETWORK

2020-06-19
CURRENT
ARINC848
ARINC Specification 848 is a functional standard based on a protocol specification profile for a secured network interface. The purpose is to define a common method of initiating a mutually authenticated tunnel between an aircraft service and its Enterprise service. ARINC Specification 848 defines a standard implementation for securing the communications between an onboard Local Area Network (LAN) and an Enterprise LAN on the ground. Various aircraft network architectures and various air to ground communication channels (aka media) are accommodated in this document. For example, L-band Satellite Communication (Satcom), Ku/Ka-band Satcom, Gatelink Cellular, and Gatelink are considered.
Standard

INTERNET PROTOCOL SUITE (IPS) FOR AERONAUTICAL SAFETY SERVICES PART 1 AIRBORNE IPS SYSTEM TECHNICAL REQUIREMENTS

2021-06-21
CURRENT
ARINC858P1
ARINC 858 Part 1 defines the airborne data communication network infrastructure for aviation safety services using the Internet Protocol Suite (IPS). ARINC 858 builds upon ICAO Doc 9896, Manual on the Aeronautical Telecommunication Network (ATN) using Internet Protocol Suite (IPS) Standards and Protocol. IPS will extend the useful life of data comm services presently used by operators, e.g., VDL, Inmarsat SBB, Iridium NEXT, and others. It represents the evolutionary path from ACARS and ATN/OSI to the end state: ATN/IPS. ARINC 858 includes advanced capabilities such as aviation security and mobility. This product was developed in coordination with ICAO WG-I, RTCA SC-223, and EUROCAE WG-108.
Book

Fuel Efficiency: Racing Toward CAFE 2025 (DVD)

2015-04-15
"Spotlight on Design" features video interviews and case study segments, focusing on the latest technology breakthroughs. Viewers are virtually taken to labs and research centers to learn how design engineers are enhancing product performance/reliability, reducing cost, improving quality, safety or environmental impact, and achieving regulatory compliance. Fuel efficiency, or simply put, how to get more mileage out of the same amount of fuel has become one of the main goals to be achieved by new automotive technologies in the future, thanks in part to new government regulations. In the episode "Fuel Efficiency: Racing toward CAFE 2025" (21:24) AVL engineers show simulation and testing being used to design more fuel efficient vehicles, including the equipment that actually analyzes fuel economy.
Book

Insight: Fuel Effiency: Fuel Economy Testing (DVD)

2015-04-15
"Spotlight on Design: Insight" features an in-depth look at the latest technology breakthroughs impacting mobility. Viewers are virtually taken to labs and research centers to learn how design engineers are enhancing product performance/reliability, reducing cost, improving quality, safety or environmental impact, and achieving regulatory compliance. As global concerns about the negative consequences of greenhouse gases on the environment increase, regulatory agencies around the world are taking serious steps to address the issue of tailpipe emissions In the episode "Fuel Efficiency: Fuel Economy Testing" (12:01), engineers at the EPA’s National Vehicle and Fuel Emissions Laboratory demonstrate how different vehicles are tested for emissions, and AVL’s technical team shows how accurate tailpipe emissions can be measured and reported.
Book

Automated Vehicles: Sensors and Future Technologies (DVD)

2015-04-15
"Spotlight on Design" features video interviews and case study segments, focusing on the latest technology breakthroughs. Viewers are virtually taken to labs and research centers to learn how design engineers are enhancing product performance/reliability, reducing cost, improving quality, safety or environmental impact, and achieving regulatory compliance. In the episode "Automated Vehicles: Sensors and Future Technologies" (24:31), highly automated driving is looked at in detail as the culmination of years of research in automotive technology, sensors, infrastructure, software, and systems integration. Real-life case studies show how organizations are actually developing solutions to the challenge of making cars safer with less driver intervention. IAV Automotive Engineering demonstrates how a highly automated vehicle capable of lane changing was created.
Video

Charging Forward on Petroleum Alternatives

2011-12-14
The pace of replacement of petroleum-based fuels as the primary fuel supply for transportation may still be a point of debate. However, the need to find a viable replacement fuel or group of fuels is no longer a major point of debate. The panel will outline what has changed on the journey during the past few years and what the future holds. Viewpoints from government, the military, fuel suppliers and academia will be presented.
Video

Consumer Behavior and Risk Aversion

2011-11-04
Nissan has released our original HEV system in Japan on November 2010, and will release it in US market on March 2011. The 1 motor 2 clutch parallel type using conventional 7 speed automatic transmission has been employed without torque converter and with a manganese cathode and laminated type Li-ion Battery. This system is well recognized its higher efficiency but lower weight and cost, however, has never realized due to technical difficulties of smoothness. At this session, performance achievements and hinged breakthrough technologies will be presented. Presenter Tetsuya Takahashi, Nissan Motor Co., Ltd.
X