Refine Your Search

Topic

Author

Affiliation

Search Results

Book

The Business of Winning

2007-01-01
Motorsport Valley® is the dynamic motorsport industry cluster of companies whose global influence is as strong as ever. Learn more about the innovative technologies which continue to deliver world-beating success in the outstanding MIA publication - The Business of Winning. In-depth, up-to-the-minute features and case studies fill the full-colour 100-plus pages. The Business of Winning analyses the pioneering ideas, processes and capabilities that characterize Motorsport Valley® and UK high-performance engineering and features exciting images which bring the story to life. The Business of Winning, supported by UK Trade & Investment, focuses on the successful companies that comprise Motorsport Valley and highlights their presence at the forefront of the global motorsport industry. This is THE case-study source for customers, business leaders, researchers, students and fans.
Book

Death Rays, Jet Packs, Stunts and Supercars: The Fantastic Physics of Film's Most Celebrated Secret Agent

2005-01-01
James Bond would have died a thousand deaths if not for Q, the genius behind the pen grenades and weaponized sports cars that have helped Britain's most famous secret agent cheat death in twenty films. Here Barry Parker demonstrates how science and technology have been as important to 007 as good looks, shaken martinis, and beautiful women. Using entertaining sketches and nontechnical language, Parker explains the basic physics behind the gadgets, cars, and stunts in a number of Bond films, from the jet packs in Thunderball to the dynamics of daredevil bungee jumping in GoldenEye. If you've ever wondered whether the laser could have actually cut Bond in half (Goldfinger), if a wristwatch could really unzip a woman's dress (Live and Let Die), or whether your car could do the 360-degree barrel roll from The Man with the Golden Gun, this book is for you.
Collection

Vehicle Aerodynamics, 2018

2018-04-03
Vehicle aerodynamic development, drag reduction and fuel economy, handling and stability, cooling flows, surface soiling and water management, vehicle internal environment, tyre aerodynamics and modelling, aeroacoustics, structural response to aerodynamic loading, simulating the on-road environment, onset flow turbulence, unsteady aerodynamics, fundamental flow structures, new test methods and facilities, new applications of computational fluid dynamics simulation, competition vehicle aerodynamics.
Standard

A Current Assessment of Combining Distortion Types

2019-07-22
WIP
AIR9975
This document will address techniques or methods that have been used within the industry to address the problem of engine stability margin accounting when combinations of distortion types exist in an aircraft installation. Its focus is combining temperature, planar wave, and swirl distortion with time-variant spatial total pressure distortion. Example methodologies will be presented along with example cases where co-existing distortions have been evaluated. It will also address the areas where the industries' knowledge base is lacking (experimental data or computational methods) and the future work that is needed for methodology development in these areas. This document is viewed to be updated every five years as more information (data either experimentally or analytically) becomes available.
Book

Insight: Fuel Effiency: Fuel Economy Testing (DVD)

2015-04-15
"Spotlight on Design: Insight" features an in-depth look at the latest technology breakthroughs impacting mobility. Viewers are virtually taken to labs and research centers to learn how design engineers are enhancing product performance/reliability, reducing cost, improving quality, safety or environmental impact, and achieving regulatory compliance. As global concerns about the negative consequences of greenhouse gases on the environment increase, regulatory agencies around the world are taking serious steps to address the issue of tailpipe emissions In the episode "Fuel Efficiency: Fuel Economy Testing" (12:01), engineers at the EPA’s National Vehicle and Fuel Emissions Laboratory demonstrate how different vehicles are tested for emissions, and AVL’s technical team shows how accurate tailpipe emissions can be measured and reported.
Collection

Multi-Dimensional Engine Modeling, 2017

2017-03-28
This collection covers advances in the development and application of models and tools involved in multi-dimensional engine modeling: advances in chemical kinetics, combustion and spray modeling, turbulence, heat transfer, mesh generation, and approaches targeting improved computational efficiency. Papers employing multi-dimensional modeling to gain a deeper understanding of processes related to turbulent transport, transient phenomena, and chemically reacting, two-phase flows are included in this collection.
Technical Paper

The Modeling of Mold Filling in Structural Reaction Injection Molding

1996-04-01
91A118
The main use of FRC in automobiles, with the exception of a few specialized low volume vehicles, has been until now in semistructural parts. One of the most promising process in development today, that may play major role in future structural composite fabrication, is based on SRIM technology. The rapid and extensive introduction of this process goes also through the development of deeper theoretical knowledge of the process and the development of computer simulation to aid mold design and choice of proper processing parameters. To contribute SRIM advancement, a preliminary model has been developed for viscosity changes, extent of the reaction and temperature rises, associated with the mold filling stage, as well as a simple software to evaluate the pressure drop through different combinations of reinforcements.
Technical Paper

Integration and Validation of Sheet Metal Forming Simulation Computer Programs Into the Design Process

1996-04-01
91A121
In order to improve the design of drawn parts and to reduce the number of trial and error tests, Renault has undertaken the development and the validation of various finite element procedures and codes. This paper describes the function of each software and its level of integration into the design process. One of them is already an operational tool used be planners whilst the others are still in the validation phase. Selected examples show typical applications of the computer programs on automotive parts.
Technical Paper

Critical Compression Loads on Aluminum Honeycomb Panels

1996-04-01
91A131
The purely theoretical evaluation of critical compression loads seems complex and not very reliable in the case of honeycomb panels, on account of the numerous parameters in play and their complex interrelationships. This report provides the designer with a fast tool for preliminary calculations, consisting of a finite-element mathematical model with elastic-linear code (which can be processed using a PC), which makes it possible to obtain information very closely resembling the real situation.
Technical Paper

Multifunctional Glasses for Automotive

1996-04-01
91A109
The windows of a vehicle have to satisfy the following driver and passenger needs concerning visibility and climate perception both related to active safety: transparency, reluctance, dazzling, glare and diffused light (scattering). All functions are related to visibility and so to the optics of glazing, solar control, deicing, defogging, demisting. The task of material science is to find the multifunctional glasses solving simultaneously problems of visibility, safety and comfort. Particular kind of glasses, colored, wired, coated, electrochromic, liquid crystal, photochromic can be already considered solutions which can operate passively or actively. The example of passive solar control and active heatable coated glasses is shown as a possible practical multifunctional glass very soon.
Technical Paper

Antiwear Properties and Applications of Thin Hard Coatings

1996-04-01
91A106
Different techniques, like PVD, CVD, ion implantation, are increasingly used to produce thin film layers of ceramic compounds to modify the surface properties of metals, carbides, ceramics or polymeric components for specialized conditions or in severe conditions of use. Carbides, nitrides, oxides, etc. have been deposited on the most varied supports to solve problems of high temperature, erosion, corrosion, diffusion and conductivity or electrical resistance. The fields of thin hard coating applications are: tools, dies, punches, mechanical components (for antiwear deposits), structures (for anticorrosion), optics (reflecting or absorbing layers) and microelectronics. In this paper we will present the principal characteristics of different thin hard coating layers and processes, and the principal applications in the anti-wear field.
Technical Paper

Finite Modeling of Sheet Stamping Operations

1996-04-01
91A089
A wide variety of choices confront the potential user of finite element modeling (FEM) for sheet forming analysis. In the first part of this paper, a brief summary of the basic formulations available and sample references to them are provided. Several kinds of finite element models have been developed for analyzing sheet forming operations at OSU and in the Center for Net Shape Manufacturing. These variations began with in-plane FEM and grew into 3-D versions. In the second part of this paper, some key conclusions from these developments will be summarized. More recently, a section analysis program (SHEET-S) has been prepared and transferred to industry. The capabilities and limitations of SHEET-S will be presented in greater detail, including comparisons with experiments and industrial trials.
Technical Paper

A Study on the Performance of Guideway Bus Steering Control System

1988-03-01
871231
In this paper a computer simulation study on the effects of steering parameters on lateral dynamics of the guideway bus to contribute to a development practice of designing optimum steering control system are dealt with. A stability limit of vehicle lateral motion is analyzed and an emphasis is laid on the effects of moment of inertia of a conventional steering wheel and lateral elasticity of the guide rail which have proven to reduce the critical vehicle speed. It is pointed out conclusively that a normal bus equipped with additional simple guidance equipments can be guided smoothly on a simple guideway at adequately high vehicle speed.
Technical Paper

A Numerical Simulation of the Unsteady Laminar Flame Propagation in a Closed Cylindrical Combustion Bomb

1988-03-01
871174
Unsteady laminar flame propagation confined in a closed cylindrical combustion bomb is studied by numerical computation for an axisymmetric two-dimensional laminar flame. Computation includes complete two-dimensional unsteady Navier-Stokes equations of change for a chemically reacting propane-air mixture. Implicit Continuous fluid Eulerian, Arbitrary Lagrangian Eulerian finite difference technique, simplified reaction kinetics models, and artificial flame stretching transformation and inverse transformation were adopted in the calculation. Physically realistic flame behavior can be demonstrated even with rather coarse computing cell size, simplified reaction kinetics models, and personal computer level low power computing machines.
Technical Paper

Guidelines on the Use of Experimental Sea for Modeling and Understanding Road Noise in Cars

1999-05-17
1999-01-1704
Over the last years, SEA has been recognized as a useful tool to model and analyze the high-frequency vibro-acoustic behavior of fully assembled complex structures. This paper discusses the experimental derivation of the loss factor model of a passenger car. The paper outlines the different steps which need to be taken to obtained a fully validated experimental SEA model. This includes the subdivision into subsystems, the PIM measurement campaign, the derivation of the loss factors and their associated confidence levels and the model validation. The paper further details how the experimental SEA model was used to quantify and investigate the airborne and structure-borne contributions to the interior noise level for a road noise test condition. The operational power inputs to the vehicle were indirectly determined from operational response measurements. A contribution analysis showed that airborne noise sources dominated structure-borne noise sources above 500Hz.
Technical Paper

Analysis of Vehicle Pillar Cavity Foam Block Effect on Interior Noise Using SEA

1999-05-17
1999-01-1701
Closed cell foam has been used for filling vehicle pillar cavities at select locations to block road noise transmitted through pillars. In the past, most pillar foam implementations in vehicle programs were driven by subjective improvements in interior sound. In this study road test results are used to correlate a detailed CAE (Computer-Aided Engineering) model based on the statistical energy analysis method. Noise reduction characteristics of pillar with a number of foam block fillings were then studied using the CAE model. The CAE models provided means to model and understand the mechanism of noise energy flow through pillar cavities. A number of insightful conclusions were obtained as result of the study.
Technical Paper

Calculating Partial Contribution Using Component Sensitivity Values: A Different Approach to Transfer Path Analysis

1999-05-17
1999-01-1693
Transfer Path Analysis (TPA) is a widely used methodology in Noise, Vibration and Harshness (NVH) analysis of motor vehicles. Either it is used to design a vehicle from scratch or it is applied to root cause an existing NVH problem, TPA can be a useful tool. TPA analysis is closely related to the concept of partial contribution. The very basic assumption in TPA is that the summation of all partial contributions from different paths constitutes the total response (which could be either tactile or acoustic). Another popular concept in NVH analysis of vehicles is the component sensitivity. Component sensitivity is a measure of how much the response changes due to a change in one of the components of the system, i.e., the thickness of a panel or elastic rate of an engine mount. Sensitivity rates are more popular among CAE/Simulation community, simply because they are reasonably easy to calculate using mathematical models.
Technical Paper

Process to Achieve NVH Goals: Subsystem Targets via “Digital Prototype” Simulations

1999-05-17
1999-01-1692
A process to achieve vehicle system level NVH objectives using CAE simulation tools is discussed. Issues of modeling methodology, already covered adequately in the literature, are less emphasized so that the paper can focus on the application of a process that encompasses objective setting, design synthesis, and performance achievement using simulation predictions. A reference simulation model establishes correlation levels and modeling methods that are applied to future predictions. The new model, called a “Digital Mule”, is an early new product “design intent” simulation used to arrive at subsystem goals to meet the vehicle level NVH objectives. Subsystem goals are established at discrete noise paths where structure borne noise enters the body subsystem. The process also includes setting limits on the excitation sources, such as suspension and powertrain.
Technical Paper

Modeling and Measurement of Occupied Car Seats

1999-05-17
1999-01-1690
An overview of model development for seated occupants is presented. Two approaches have been investigated for modeling the vertical response of a seated dummy: finite element and simplified mass-spring-damper methods. The construction and implementation of these models are described, and the various successes and drawbacks of each modeling approach are discussed. To evaluate the performance of the models, emphasis was also placed on producing accurate, repeatable measurements of the static and dynamic characteristics of a seated dummy.
X