Refine Your Search

Search Results

Viewing 1 to 14 of 14
Technical Paper

The Texas Project, Part 5 - Economic Analysis: CNG and LPG Conversions of Light-Duty Vehicle Fleets

1998-10-19
982447
The Texas Project was a multi-year study of aftermarket conversions of a variety of light-duty vehicles to CNG or LPG. One aspect of this project was to examine the factors that influence the economics of fleet conversions to these alternative fuels. The present analysis did not include longer-term effects (such as possible increases in exhaust system life or increases in tire wear). Additionally, assumptions were required to estimate the costs of repairs to the alternative fuel system and engine. Other factors considered include conversion cost, fuel prices, annual alternative fuel tax (as applied for the state of Texas), annual miles accumulated, and the percent miles traveled while using the alternative fuel for dual fuel conversions.
Technical Paper

Development of the Texas Drayage Truck Cycle and Its Use to Determine the Effects of Low Rolling Resistance Tires on the NOX Emissions and Fuel Economy

2009-04-20
2009-01-0943
Trucks operating in inter-modal (drayage) operation in and around port and rail terminals, are responsible for a large proportion of the emissions of NOX, which are problematic for the air quality of the Houston and Dallas/Ft. Worth metro areas. A standard test cycle, called the Texas Dray Truck Cycle, was developed to represent the operation of heavy-duty diesel trucks in dray operations. The test cycle reflects the substantial time spent at idle (~45%) and the high intensity of the on-road portions. This test cycle was then used in the SAE J1321 test protocol to evaluate the effect on fuel consumption and NOX emissions of retrofitting dray trucks with light-weight, low-rolling resistance wide-single tires. In on-track testing, a reduction in fuel consumption of 8.7% was seen, and NOX emissions were reduced by 3.8% with the wide single tires compared to the conventional tires.
Technical Paper

The Texas Diesel Fuels Project, Part 2: Comparisons of Fuel Consumption and Emissions for a Fuel/Water Emulsion and Conventional Diesel Fuels

2004-03-08
2004-01-0087
The Texas Department of Transportation began using an emulsified diesel fuel in 2002. They initiated a simultaneous study of the effectiveness of this fuel in comparison to 2D on-road diesel fuel and 2D off-road diesel. The study included comparisons of fuel economy and emissions for the emulsion, Lubrizol PuriNOx®, relative to conventional diesel fuels. Two engines and eight trucks, four single-axle dump trucks, and four tandem-axle dump trucks were tested. The equipment tested included both older mechanically-controlled diesels and newer electronically-controlled diesels. The two engines were tested over two different cycles that were developed specifically for this project. The dump trucks were tested using the “route” technique over one or the other of two chassis dynamometer cycles that were developed for this project In addition to fuel efficiency, emissions of NOx, PM, CO, and HCs were measured. Additionally, second-by-second results were obtained for NOx and HCs.
Technical Paper

The Texas Diesel Fuels Project, Part 3: Cost-Effectiveness Analyses for an Emulsified Diesel Fuel for Highway Construction Equipment Fleets

2004-03-08
2004-01-0086
The Texas Department of Transportation (TxDOT) began using an emulsified diesel fuel as an emissions control measure in July 2002. They initiated a study of the effectiveness of this fuel in comparison to conventional diesel fuel for TxDOT's Houston District operations and included the fleet operated by the Associated General Contractors (AGC) in the Houston area. Cost-effectiveness analyses, including the incremental cost per ton of NOx removed, were performed. NOx removal was the focus of this study because Houston is an ozone nonattainment area, and NOx is believed to be the limiting factor in ozone formation in the Houston area. The cost factors accounted for in the cost-effectiveness analyses included the incremental cost of the fuel (including an available rebate from the State of Texas), the cost of refueling more often, implementation costs, productivity costs, maintenance costs, and various costs associated with the tendency of the emulsion to separate.
Technical Paper

The Texas Diesel Fuels Project, Part 1: Development of TxDOT-Specific Test Cycles with Emphasis on a “Route” Technique for Comparing Fuel/Water Emulsions and Conventional Diesel Fuels

2004-03-08
2004-01-0090
The Texas Department of Transportation (TxDOT) began using an emulsified diesel fuel in July 2002. They initiated a simultaneous study of the effectiveness of this fuel in comparison to 2D on-road diesel fuel, which they use in both their on-road and off-road equipment. The study also incorporated analyses for the fleet operated by the Associated General Contractors (AGC) in the Houston area. Some members of AGC use 2D off-road diesel fuel in their equipment. The study included comparisons of fuel economy and emissions for the emulsified fuel relative to the conventional diesel fuels. Cycles that are known to be representative of the typical operations for TxDOT and AGC equipment were required for use in this study. Four test cycles were developed from data logged on equipment during normal service: 1) the TxDOT Telescoping Boom Excavator Cycle, 2) the AGC Wheeled Loader Cycle, 3) the TxDOT Single-Axle Dump Truck Cycle, and 4) the TxDOT Tandem-Axle Dump Truck Cycle.
Technical Paper

Effects of Engine Speed on Combustion in SI Engines: Comparisons of Predictions of a Fractal Burning Model with Experimental Data

1993-10-01
932714
Predictions of the Fractal Engine Simulation code were compared with SI engine data in a previous paper. These comparisons were extremely good except for the single data set available at a low engine speed. Because of uncertainty regarding whether the lack of agreement for this case resulted from some difficulty with the experimental data or was due to lack of proper speed dependence in the model, additional comparisons are made for a range of speeds from 300-1500 rpm. The fractal burning model is a turbulence driven model (i.e., driven primarily by the turbulence intensity) that divides the combustion process into four sequential phases: 1) kernel formation, 2) early flame growth, 3) fully developed turbulent flame propagation, and 4) end of combustion. The kernel formation process was not included in the previous version of this model, but was found to be required to predict engine speed effects.
Technical Paper

Combustion Modeling in SI Engines with a Peninsula-Fractal Combustion Model

1996-02-01
960072
In premixed turbulent combustion models, two mechanisms have been used to explain the increase in the flame speed due to the turbulence. The newer explanation considers the full range of turbulence scales which wrinkle the flame front so as to increase the flame front area and, thus, the flame propagation speed. The fractal combustion model is an example of this concept. The older mechanism assumes that turbulence enables the penetration of unburned mixtures across the flame front via entrainment into the burned mixture zone. The entrainment combustion or eddy burning model is an example of this mechanism. The results of experimental studies of combustion regimes and the flame structures in SI engines has confirmed that most combustion takes place at the wrinkled flame front with additional combustion taking place in the form of flame fingers or peninsulas.
Technical Paper

The Texas Diesel Fuels Project, Part 4: Fuel Consumption, Emissions, and Cost-Effectiveness of an Ultra-Low-Sulfur Diesel Fuel Compared to Conventional Diesel Fuels

2005-04-11
2005-01-1724
The Texas Department of Transportation (TxDOT) began using an ultra-low-sulfur, low aromatic, high cetane number diesel fuel (TxLED, Texas Low Emission Diesel) in June 2003. They initiated a simultaneous study of the effectiveness to reduce emissions and influence fuel economy of this fuel in comparison to 2D on-road diesel fuel used in both their on-road and off-road equipment. The study incorporated analyses for the fleet operated by the Association of General Contractors (AGC) in the Houston area. Some members of AGC use 2D off-road diesel in their equipment. One off-road engine, two single-axle dump trucks, and two tandem-axle dump trucks were tested. The equipment tested included newer electronically-controlled diesels. The off-road engine was tested over the TxDOT Telescoping Boom Excavator Cycle. The dump trucks were tested using the “route” technique over the TxDOT Single-Axle Dump Truck Cycle or the TxDOT Tandem-Axle Dump Truck Cycle.
Technical Paper

Design of a Formula SAE Race Car: Vehicle Dynamics and Performance

1982-02-01
821092
A design guide for vehicles is presented, including considerations of vehicle dynamics and vehicle performance. The various aspects of vehicle design are both qualitatively and quantitatively discussed, including presentation of the relevant theory, governing equations, and design options of interest for a small race car such as a Formula SAE vehicle. Relevant conclusions drawn from the theoretical analysis are presented.
Technical Paper

The 1982 National Intercollegiate Formula SAE Competition

1982-02-01
821093
This paper discusses the Formula SAE Student Engineering Design Competition that was held May 27–29, 1982. As was the case of previous student engineering design competitions, the purpose of the Formula SAE Competition is to enhance engineering education by requiring students to apply the technical knowledge gained in their coursework to a practical engineering design problem including choice of appropriate design criteria, design, fabrication, testing, and evaluation. For the Formula SAE Competition, the design problem chosen is to design, construct, and compete a low powered Indianapolis-type race car. The purpose of this paper is to describe the 1982 Formula SAE Competition and to present the results of this event. It is expected that this paper will serve as a guide to hosts of similar competitions and will aid future Formula SAE competitors.
Technical Paper

The 1984 Formula SAE Intercollegiate Competition

1984-09-01
841163
This paper discusses the Formula SAE Student Engineering Design Competition that was held May 24-26, 1984. As was the case of previous student engineering design competitions, the purpose of the Formula SAE Competition is to enhance engineering education by requiring students to apply the technical knowledge gained in their coursework to a practical engineering design problem including choice of appropriate design criteria, design, fabrication, testing, and evaluation. For the Formula SAE Competition, the design problem chosen is to design, construct, and compete a low powered Formula type race car. The purpose of this paper is to describe the 1984 Formula SAE Competition and to present the results of this event. It is expected that this paper will serve as a guide to hosts of similar competitions and will aid future Formula SAE competitors.
Technical Paper

The 1983 Formula SAE Championship Competition

1983-09-12
831390
This paper discusses the Formula SAE Student Engineering Design Competition that was held May 26-28, 1983. As was the case of previous student engineering design competitions, the purpose of the Formula SAE Competition is to enhance engineering education by requiring students to apply the technical knowledge gained in their coursework to a practical engineering design problem including choice of appropriate design criteria, design, fabrication, testing, and evaluation. For the Formula SAE Competition, the design problem chosen is to design, construct, and compete a low powered Formula type race car. The purpose of this paper is to describe the 1983 Formula SAE Competition and to present the results of this event. It is expected that this paper will serve as a guide to hosts of similar competitions and will aid future Formula SAE competitors.
Technical Paper

Emissions and Fuel Economy of a 1998 Toyota with a Direct Injection Spark Ignition Engine

1999-05-03
1999-01-1527
A 1998 Toyota Corona passenger car with a direct injection spark ignition (DISI) engine was tested via a variety of driving cycles using California Phase 2 reformulated gasoline. A comparable PFI vehicle was also evaluated. The standard driving cycles examined were the Federal Test Procedure (FTP), Highway Fuel Economy Test, US06, simulated SC03, Japanese 10-15, New York City Cycle, and European ECE+EDU. Engine-out and tailpipe emissions of gas phase species were measured each second. Hydrocarbon speciations were performed for each phase of the FTP for both the engine-out and tailpipe emissions. Tailpipe particulate mass emissions were also measured. The results are analyzed to identify the emissions challenges facing the DISI engine and the factors that contribute to the particulates, NOx, and hydrocarbon emissions problems of the DISI engine.
Technical Paper

Voltage, and Energy Deposition Characteristics of Spark Ignition Systems

2005-04-11
2005-01-0231
Time-resolved current and voltage measurements for an inductive automotive spark system were made. Also presented are measurements of the total energy delivered to the spark gap. The measurements were made in air for a range of pressures from 1-18 atm, at ambient temperatures. The measured voltage and current characteristics were found to be a function of many ignition parameters; some of these include: spark gap distance, internal resistance of the spark plug and high tension wire, and pressure. The voltages presented were measured either at the top of the spark plug or at the spark gap. The measurements were made at different time resolutions to more accurately resolve the voltage and current behavior throughout the discharge process. This was necessary because the breakdown event occurs on a time scale much shorter than the arc and glow phases.
X