Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Engine Control System for Lean Combustion

1988-03-01
871171
In order to achieve lean burn engine control system, it is necessary to develop high accuracy air fuel ratio control technology including transient driving condition and lean burn limit expansion technology. This paper describes the following. 1 The characteristics of the transient response of the fuel supply are clarified when various kinds of air flow measuring methods and fuel injection methods are used. 2 To achieve stable combustion in lean mixture, fine fuel droplet mixture, whose diameter is less than 40 μm, needs to be supplied.
Technical Paper

Effect of High Squish Combustion Chamber on Simultaneous Reduction of NOx and Particulate from a Direct-Injection Diesel Engine

1999-05-03
1999-01-1502
In this study it is tried to reduce NOx and particulate emissions simultaneously in a direct injection diesel engine based on the concept of two-stage combustion. At initial combustion stage, NOx emission is reduced with fuel rich combustion. At diffusion combustion stage, particulate emission is reduced with high turbulence combustion. The high squish combustion chamber with reduced throat diameter is used to realize two-stage combustion. This combustion chamber is designed to produce strong squish that causes high turbulence. When throat diameter of the high squish combustion chamber is reduced to some extent, simultaneous reduction of NOx and particulate emissions is achieved with less deterioration of fuel consumption at retarded injection timing. Further reduction of NOx emission is realized by reducing the cavity volume of the high squish combustion chamber. Analysis by endoscopic high speed photography and CFD calculation describes the experimental results.
Technical Paper

A Photographic Investigation of Multi-Stage Fuel Injection in a Single Cylinder DI Diesel Engine

1999-05-03
1999-01-1501
Increasing concern about the impact of internal combustion engines on the environment has led to ever more stringent emission legislation, and the introduction of more sophisticated equipment to enable the requirements to be achieved. One way of improving the emissions from direct injection (DI) diesel engines is to use multi-stage fuel injection, and an investigation performed on such a system is reported in this paper. In this case, the multi-stage fuel injector caused an increase in the exhaust smoke at low load, and an in-cylinder photographic technique was used to examine why this occurred. A multi-stage fuel injector with a VCO nozzle was fitted to a small, high-speed, direct injection diesel engine fitted with a transparent piston for optical access. The combustion process was filmed using a high-speed 16 mm cine camera, and the fuel injection process was illuminated by a high power, copper-vapour laser.
Technical Paper

A Comparison of Gasoline Direct Injection and Port Fuel Injection Vehicles: Part II - Lubricant Oil Performance and Engine Wear

1999-05-03
1999-01-1499
Four 1998 Mitsubishi Carismas, two equipped with direct injection (GDI) and two with port fuel injection engines (PFI) were tested in a designed experiment to determine the effect of mileage accumulation cycle, engine type, fuel and lubricant type on engine wear and engine oil performance parameters. Fuel types were represented by an unadditised base fuel meeting EEC year 2000 specifications and the same base fuel plus synthetic deposit control additive packages. Crankcase oils were represented by two types (1) a 5W-30 API SJ/ILSAC GF-2 type engine oil and (2) a 10W-40 API SH/CF ACEA A3/ B3-96 engine oil. The program showed that specific selection of oil additive chemistry may reduce formation of intake valve deposits in GDI cars.. In general, G-DI engines produced more soot and more pentane insolubles and were found to be more prone to what appears to be soot induced wear than PFI engines.
Technical Paper

Effects of a Hybrid Fuel System with Diesel and Premixed DME/Methane Charge on Exhaust Emissions in a Small DI Diesel Engine

1999-05-03
1999-01-1509
Early stage combustion systems, with lean homogeneous charge compression ignition (HCCI), have been studied, with the intent to decrease the pollutant emission characteristics of DI diesel engines. Early stage combustion enables drastic reductions in both nitrogen oxides (NOx) and smoke emission, but the operating load range is restricted, due to combustion phenomena, such as unsteady combustion and knocking. In this study, we explored the possibility of broadening the operating load range in HCCI and reducing pollutant emissions using Dimethyl Ether (DME) fumigated through the intake pipe. However, the improvements in load range were found to be less than 0.1 MPa in brake mean effective pressure (BMEP), even when compression ratios were reduced and Methane with high octane number was mixed. Therefore, a DME premixed charge could be used only at light loads. At heavier loads a hybrid fuel system with a DME premixed charge and diesel fuel injection is necessary.
Technical Paper

Experimental and Simulation Approaches to Understanding Soot Aggregation

1999-05-03
1999-01-1516
During 1998, the US Federal authority introduced a requirement for vehicles powered by heavy duty diesel engines that NOx emissions shall be less than 4 g/bhp.h. This represents a 20% reduction over current levels and has prompted significant further hardware changes. As a result of these increasingly tighter NOx emission constraints, soot loading of diesel engine lubricants - due to retarded fuel injection, is becoming an ever more significant issue in crankcase lubricant formulation. For this reason, increased understanding is required of the mechanism of soot particle aggregation and resultant aggregate morphology - together with the likely consequences for the performance of soot-laden lubricants, for viscosity increase, filter blocking, sludging and (directly or indirectly) - soot-induced wear. We describe here a combined experimental and simulation approach to screening formulated lubricants and characterising soot aggregate structures.
Technical Paper

Particulate Emissions from a Direct-Injection Spark-Ignition (DISI) Engine

1999-05-03
1999-01-1530
The numbers, sizes, and derived mass emissions of particles from a production DISI engine are examined over a range of engine operating conditions. Particles are sampled directly from the exhaust pipe using heated ejector pump diluters. The size distributions are measured using a scanning mobility particle sizer. The numbers and sizes of the emitted particles are reported for stratified versus homogeneous operation and as a function of fuel injection timing, spark timing, engine speed, and engine load. The principal finding is that particle number emissions increase by about a factor of 10 - 40 going from homogeneous to stratified charge operation. The particulate emissions exhibit a strong sensitivity to injection timing; generally particle number and volume concentrations increase steeply as the injection timing is retarded, except over a narrow portion of the range where the trend reverses.
Technical Paper

Engine-Out Emissions from a Direct-Injection Spark-Ignition (DISI) Engine

1999-05-03
1999-01-1529
The effects of operating parameters (speed, load, spark-timing, EGR, and end of fuel injection timing [EOI]) on engine-out, regulated (total HC, NOx, and CO) and speciated HC emissions have been investigated for a 1.83 L direct-injection, spark-ignition (DISI) engine. As the EOI is varied over the range from high to low stratification with other engine parameters held constant, the mole fractions of all regulated emissions vary sharply over relatively small (10-20 crank angle degrees [CAD]) changes in EOI, suggesting that emissions are very sensitive to the evaporation, mixing, and motion of the stratified fuel cloud prior to ignition. The contribution of unburned fuel to the HC emissions decreases while the olefinic partial oxidation products increase as the fuel stratification increases, increasing the smog reactivity of the HC in the exhaust gas by 25%.
Technical Paper

Effects of Injection Timing and Fuel Properties on Exhaust Odor in DI Diesel Engines

1999-05-03
1999-01-1531
Exhaust odor of DI diesel engines is worse than that of gasoline engines, especially at low temperatures and at idling. As the number of passenger cars with DI diesel engines is increasing worldwide because of their low CO2 emissions, odor reduction research of DI diesel engines is important. Incomplete combustion is a major cause of exhaust odor. Generally, odor worsens due to overleaning of the mixture in the cylinder and due to fuel adhering on the combustion chamber walls. To confirm this, the influences of different engine running conditions and fuel properties were investigated. The reason for the changes in exhaust odor with injection timing is evaluated by considerations of optimum positions of the maximum heat release. With n-heptane, a low boiling point fuel, odorous emissions increase because of overleaning of the mixture.
Technical Paper

Two-Dimensional In-Cylinder Flow Field in a Natural Gas Fueled Spark Ignition Engine Probed by Particle Tracking Velocimetry and Its Dependence on Engine Specifications

1999-05-03
1999-01-1534
An experimental study was made to investigate in-cylinder flow field in a natural gas fueled spark ignition engine and the effects of engine specifications on in-cylinder flow field. The instantaneous two-dimentional flow fields in a single-cylinder visualization engine, which has 75mm bore and 62mm stroke, were measured in various cross sections perpendicular to the cylinder axis by using the laser light sheet PTV method at various crank angles during intake, compression, and expansion strokes over the wide range of piston combustion chamber configuration, top clearance, and nominal swirl ratio. Flow fields during compression and expansion strokes were also calculated using KIVA2 simulation code for better understanding of the measured results. The results showed that induction-generated swirl is getting concentric to the cylinder center in compression stroke, and is shifted in the radial direction in expansion stroke.
Technical Paper

Gas Flows Through the Inter-Ring Crevice and Their Influence on UHC Emissions

1999-05-03
1999-01-1533
Influence of the inter-ring crevice, the volume between the top and second piston rings, on unburned hydrocarbon (UHC) emission was experimentally and numerically investigated. The ultimate goal of this study was to estimate the level of UHC emission induced by the blow-up of inter-ring mixture, i.e., unburned gases trapped in the inter-ring crevice. In the experiments, the inter-ring mixture was extracted to the crankcase during the late period of expansion and the early period of exhaust stroke through the engraved grooves on the lower part of cylinder wall. Extraction of the mixture resulted in the significant reductions of UHC emission in proportion to the increments of blowby flow rate, without any losses in efficiency and power. This experimental study has confirmed the importance of inter-ring crevice on UHC emission in an SI engine and established a relationship between the inter-ring mixture and UHC emission.
Technical Paper

The Application of Ceramic and Catalytic Coatings to Reduce the Unburned Hydrocarbon Emissions from a Homogeneous Charge Compression Ignition Engine

2000-06-19
2000-01-1833
An experimental and theoretical study of the effect of thermal barriers and catalytic coatings in a Homogeneous Charge Compression Ignition (HCCI) engine has been conducted. The main intent of the study was to investigate if a thermal barrier or catalytic coating of the wall would support the oxidation of the near-wall unburned hydrocarbons. In addition, the effect of these coatings on thermal efficiency due to changed heat transfer characteristics was investigated. The experimental setup was based on a partially coated combustion chamber. The upper part of the cylinder liner, the piston top including the top land, the valves and the cylinder head were all coated. As a thermal barrier, a coating based on plasma-sprayed Al2O3 was used. The catalytic coating was based on plasma-sprayed ZrO2 doped with Platinum. The two coatings tested were of varying thickness' of 0.15, 0.25 and 0.6 mm. The compression ratio was set to 16.75:1.
Technical Paper

Effects of Injection Conditions on Mixture Formation Process in a Premixed Compression Ignition Engine

2000-06-19
2000-01-1831
The mixture formation process in a premixed compression ignition engine was numerically analyzed. This study aimed to find out effective injection conditions for lean mixture formation with high homogeneity, since the NOx and soot emissions in the engine are closely related to the mixture homogeneity. To calculate fuel spray behavior, a practical computer code GTT (Generalized Tank and Tube) was employed. In a model for the premixed compression ignition engine, the effects of injection parameters, such as injection timing, initial droplet size, spray angle, injection velocity, nozzle type (pintle and hole) and injection position / direction, on the mixture homogeneity near ignition timing (or TDC) were investigated. To evaluate the homogeneity of the mixture, an index was defined based on the spatial distribution of fuel mass fraction. The fuel vapor mass fractions as well as the homogeneity indices, obtained as a function of time, were compared under various boundary conditions.
Technical Paper

Supercharged Homogeneous Charge Compression Ignition (HCCI) with Exhaust Gas Recirculation and Pilot Fuel

2000-06-19
2000-01-1835
In an attempt to extend the upper load limit for Homogeneous Charge Compression Ignition (HCCI), supercharging in combination with Exhaust Gas Recirculation (EGR) have been applied. Two different boost pressures were used, 1.1 bar and 1.5 bar. High EGR rates were used in order to reduce the combustion rate. The highest obtained IMEP was 16 bar. This was achieved with the higher boost pressure, at close to stoichiometric conditions and with approximately 50 % EGR. Natural gas was used as the main fuel. In the case with the higher boost pressure, iso-octane was used as pilot fuel, to improve the ignition properties of the mixture. This made it possible to use a lower compression ratio and thereby reducing the maximum cylinder pressure. The tests were performed on a single cylinder engine operated at low speed (1000 rpm). The test engine was equipped with a modified cylinder head, having a Variable Compression Ratio (VCR) mechanism.
Technical Paper

Measurement of Instantaneous Heat Flux Flowing Into Metallic and Ceramic Combustion Chamber Walls

2000-06-19
2000-01-1815
Accurate measurements of combustion gas temperature and the coefficient of heat transfer between the gas and the combustion chamber wall of internal combustion engine in cyclic operations are difficult at present. Hence the only method available for determination of states of thermal load and heat loss to the combustion chamber wall in a cycle is to measure the instantaneous temperature on the combustion chamber wall surface accurately and precisely using proper thin-film thermocouples, then to calculate the instantanenous heat flux flowing into the wall surface by means of numerical analysis. However, it is necessary to pay adequate attention to the effects of thermophysical properties of the thermocouple materials on the measured values, since any thermocouple consists of several kinds of materials which are different from those of portions to be measured.
Technical Paper

Performance Development of the First European Heavy Duty Diesel Engine Equipped with Full Electronic High Injection Pressure Common Rail System

2000-06-19
2000-01-1821
Over the last few years, Renault VI has gained an important knowledge in low emissions combustion optimization using the high injection pressure Common Rail system. A completely new six cylinder in-line DCI 11 engine has been designed with this full electronic injection system for EURO3 truck applications. The engine performance has been optimized to reach low fuel consumption and low emissions, while keeping customer utilization in mind. After a short view on the general features of the new engine, the highly flexible injection system is presented as well as its potential to control fuel injection timing, fuel quantity and pressure with multiple injections, independently of engine speed and load. The development process is described, covering the swirl design with two inlet ports per cylinder, the injector and combustion bowl geometry match and the injection data optimization.
Technical Paper

Combustion Behavior Analysis in a Transparent Research Engine Equipped with a Common Rail Diesel Injection System

2000-06-19
2000-01-1825
This paper describes a preliminary characterization of in-cylinder spray and combustion behavior from a high-pressure common rail injection system. The engine used in the tests was a single-cylinder optical research diesel engine, adequately developed in a full-fired version, equipped with a common rail injection system. An elongated piston allows for the optical access to the combustion chamber for diagnostic applications. Characteristic of the optical engine is the availability to investigate different combustion system designs due to an interchangeable head-cylinder group. The system configuration tested in the present work corresponds to a four-cylinder engine of 1930 cc of displacement that is representative in the class of light duty d.i. diesel engine. Spray and combustion evolutions were visualized through a high-speed CCD camera synchronized with a copper vapor laser acting as light source.
Technical Paper

The Influence of Swirl on HSDI Diesel Combustion at Moderate Speed and Load

2000-06-19
2000-01-1829
Heat release analysis of the in-cylinder pressure records and images of the naturally occurring combustion luminosity obtained in an optical engine are used to explore the effect of variable swirl ratio on the diesel combustion process. Swirl ratios Rs at IVC of 1.5, 2.5, and 3.5 were investigated. The engine is equipped with common-rail fuel injection equipment, and the combustion chamber geometry is maintained as close as possible to typical engines intended for automotive applications. The operating condition employed was 2000 rpm, with a gross IMEP of 5.0 bar and 800 bar injection pressure. Swirl ratio is found to exert a measurable influence on most of the combustion process, from ignition to late-cycle oxidation. Ignition delay decreases with increasing Rs, as do the magnitudes of the initial premixed burn, the peak rates of heat release, and the maximum rates of pressure rise.
Technical Paper

Spatially Resolved Air–Fuel Ratio and Residual Gas Measurements by Spontaneous Raman Scattering in a Firing Direct Injection Gasoline Engine

2000-06-19
2000-01-1795
Single–cycle air–fuel ratio (AFR) and residual gas content of the fresh charge have been measured in a firing spark ignition engine with direct fuel injection. Various engine parameter sets concerning mixture formation have been compared. The measurement setup is sensitive enough to resolve cyclic deviations of spatial air–fuel ratio gradients. This has been achieved by Linear Raman Scattering (LRS), that is performed along a line (1D LRS) in the combustion chamber of the IC engine using a spatially resolving optical multichannel analyzer as the detector. The present work aims to investigate the feasibility and accuracy of such measurements under approximately realistic conditions. The combustion chamber of the engine has been slightly modified for optical access, so that its shape is still very similar to realistic engines. The engine has been operated at homogeneous load conditions with a multi–component model fuel.
Technical Paper

Experimental Investigation of an Optical Direct Injection S.I. Engine Using Fuel-Air Ratio Laser Induced Fluorescence

2000-06-19
2000-01-1794
To provide fuel/air ratio quantitative measurements in an S.I engines, a transparent cylinder engine is investigated with the Fuel-Air Ratio Laser Induced Fluorescence (FARLIF) technique. In a homogeneous mixture, the two dimensional distribution for the fuel/air ratio is calibrated and measured during the compression stroke for different equivalence ratios. After spark ignition, the combustion zone and the flame front are visualized by laser sheet LIF. The direct-injection stratified-charge, new concept for gasoline engines is investigated with FARLIF. In the direct injection gasoline engine where the fuel is directly injected into a cylinder and the flow is highly turbulent, two injection timings are used: -early injection (i.e. during the intake stroke) to promote a homogeneous distribution; -late injection during the compression stroke, to generate a ultra-lean stratified charge.
X