Refine Your Search

Topic

Author

Affiliation

Search Results

Book

Lectures of the 32nd International Vienna Motor Symposium

2011-05-05
Proceedings from the 32nd International Vienna Motor Symposium now available through SAE International. One of the most prestigious conferences on engine development in the industry today, the International Vienna Motor Symposium, now in its 32nd year, gathers world renowned experts to discuss the current and future state of motor technology. According to Dr. Hans Peter Lenz, president of the Austrian Society of Automotive Engineers, who opened this year’s conference, markets are now in a better position to understand how internal combustion engines and electrified powertrains can actually complement each other. Presenters offered their input and experience in the development of new technologies enabling higher levels of fuel efficiency and power, longer range and a cleaner way for the mobility industry to move forward. The proceedings, available in two volumes and a CD, contain all the technical papers given during the meeting, both in English and in German.
Book

Insight: Fuel Effiency: Fuel Economy Testing (DVD)

2015-04-15
"Spotlight on Design: Insight" features an in-depth look at the latest technology breakthroughs impacting mobility. Viewers are virtually taken to labs and research centers to learn how design engineers are enhancing product performance/reliability, reducing cost, improving quality, safety or environmental impact, and achieving regulatory compliance. As global concerns about the negative consequences of greenhouse gases on the environment increase, regulatory agencies around the world are taking serious steps to address the issue of tailpipe emissions In the episode "Fuel Efficiency: Fuel Economy Testing" (12:01), engineers at the EPA’s National Vehicle and Fuel Emissions Laboratory demonstrate how different vehicles are tested for emissions, and AVL’s technical team shows how accurate tailpipe emissions can be measured and reported.
Technical Paper

Trends and Forecasts for Turbocharging

1988-03-01
871147
Predictable and unpredictable forces will change the direction of the charge-air systems industry. The driver of diesel engine development will be the stringent emissions regulations of the 1990s. The drivers in the gasoline engine market will be improved fuel economy, performance, durability and emissions. Forces will also influence the charge-air marketplace, including changes in emission standards, national fiscal policies, political issues, fuel prices, alternate fuels and consumer tastes. The world community mandate for engines that are clean, quiet, durable and fuel efficient will be satisfied, increasingly, by first-tier component suppliers developing integrated systems solutions.
Technical Paper

Effect of High Squish Combustion Chamber on Simultaneous Reduction of NOx and Particulate from a Direct-Injection Diesel Engine

1999-05-03
1999-01-1502
In this study it is tried to reduce NOx and particulate emissions simultaneously in a direct injection diesel engine based on the concept of two-stage combustion. At initial combustion stage, NOx emission is reduced with fuel rich combustion. At diffusion combustion stage, particulate emission is reduced with high turbulence combustion. The high squish combustion chamber with reduced throat diameter is used to realize two-stage combustion. This combustion chamber is designed to produce strong squish that causes high turbulence. When throat diameter of the high squish combustion chamber is reduced to some extent, simultaneous reduction of NOx and particulate emissions is achieved with less deterioration of fuel consumption at retarded injection timing. Further reduction of NOx emission is realized by reducing the cavity volume of the high squish combustion chamber. Analysis by endoscopic high speed photography and CFD calculation describes the experimental results.
Technical Paper

A Photographic Investigation of Multi-Stage Fuel Injection in a Single Cylinder DI Diesel Engine

1999-05-03
1999-01-1501
Increasing concern about the impact of internal combustion engines on the environment has led to ever more stringent emission legislation, and the introduction of more sophisticated equipment to enable the requirements to be achieved. One way of improving the emissions from direct injection (DI) diesel engines is to use multi-stage fuel injection, and an investigation performed on such a system is reported in this paper. In this case, the multi-stage fuel injector caused an increase in the exhaust smoke at low load, and an in-cylinder photographic technique was used to examine why this occurred. A multi-stage fuel injector with a VCO nozzle was fitted to a small, high-speed, direct injection diesel engine fitted with a transparent piston for optical access. The combustion process was filmed using a high-speed 16 mm cine camera, and the fuel injection process was illuminated by a high power, copper-vapour laser.
Technical Paper

What Fuel Economy Improvement Technologies Could Aid the Competitiveness of Light-Duty Natural Gas Vehicles?

1999-05-03
1999-01-1511
The question of whether increasing the fuel economy of light-duty natural gas fueled vehicles can improve their economic competitiveness in the U.S. market, and help the US Department of Energy meet stated goals for such vehicles is explored. Key trade-offs concerning costs, exhaust emissions and other issues are presented for a number of possible advanced engine designs. Projections of fuel economy improvements for a wide range of lean-burn engine technologies have been developed. It appears that compression ignition technologies can give the best potential fuel economy, but are less competitive for light-duty vehicles due to high engine cost. Lean-burn spark ignition technologies are more applicable to light-duty vehicles due to lower overall cost. Meeting Ultra-Low Emission Vehicle standards with efficient lean-burn natural gas engines is a key challenge.
Technical Paper

In-Use Emissions from Natural Gas Fueled Heavy-Duty Vehicles

1999-05-03
1999-01-1507
The objective of the work described here is to test the performance of closed-loop controlled, heavy-duty CNG engines in-use, on fuels of different methane content; and to compare their performance with similar diesel vehicles. Performance is measured in terms of pollutant emissions, fuel economy, and driveability. To achieve this objective, three buses powered by closed-loop controlled, dedicated natural gas engines were tested on the heavy-duty chassis dynamometer facility at the Colorado Institute for Fuels and High Altitude Engine Research (CIFER). Emissions of regulated pollutants (CO, NOx, PM, and THC or NMHC), as well as emissions of alde-hydes for some vehicles, are reported. Two fuels were employed: a high methane fuel (90%) and a low methane fuel (85%). It was found that the NOx, CO, and PM emissions for a given cycle and vehicle are essentially constant for different methane content fuels.
Technical Paper

Effects of Injection Timing and Fuel Properties on Exhaust Odor in DI Diesel Engines

1999-05-03
1999-01-1531
Exhaust odor of DI diesel engines is worse than that of gasoline engines, especially at low temperatures and at idling. As the number of passenger cars with DI diesel engines is increasing worldwide because of their low CO2 emissions, odor reduction research of DI diesel engines is important. Incomplete combustion is a major cause of exhaust odor. Generally, odor worsens due to overleaning of the mixture in the cylinder and due to fuel adhering on the combustion chamber walls. To confirm this, the influences of different engine running conditions and fuel properties were investigated. The reason for the changes in exhaust odor with injection timing is evaluated by considerations of optimum positions of the maximum heat release. With n-heptane, a low boiling point fuel, odorous emissions increase because of overleaning of the mixture.
Technical Paper

Emissions and Fuel Economy of a 1998 Toyota with a Direct Injection Spark Ignition Engine

1999-05-03
1999-01-1527
A 1998 Toyota Corona passenger car with a direct injection spark ignition (DISI) engine was tested via a variety of driving cycles using California Phase 2 reformulated gasoline. A comparable PFI vehicle was also evaluated. The standard driving cycles examined were the Federal Test Procedure (FTP), Highway Fuel Economy Test, US06, simulated SC03, Japanese 10-15, New York City Cycle, and European ECE+EDU. Engine-out and tailpipe emissions of gas phase species were measured each second. Hydrocarbon speciations were performed for each phase of the FTP for both the engine-out and tailpipe emissions. Tailpipe particulate mass emissions were also measured. The results are analyzed to identify the emissions challenges facing the DISI engine and the factors that contribute to the particulates, NOx, and hydrocarbon emissions problems of the DISI engine.
Technical Paper

Two-Dimensional In-Cylinder Flow Field in a Natural Gas Fueled Spark Ignition Engine Probed by Particle Tracking Velocimetry and Its Dependence on Engine Specifications

1999-05-03
1999-01-1534
An experimental study was made to investigate in-cylinder flow field in a natural gas fueled spark ignition engine and the effects of engine specifications on in-cylinder flow field. The instantaneous two-dimentional flow fields in a single-cylinder visualization engine, which has 75mm bore and 62mm stroke, were measured in various cross sections perpendicular to the cylinder axis by using the laser light sheet PTV method at various crank angles during intake, compression, and expansion strokes over the wide range of piston combustion chamber configuration, top clearance, and nominal swirl ratio. Flow fields during compression and expansion strokes were also calculated using KIVA2 simulation code for better understanding of the measured results. The results showed that induction-generated swirl is getting concentric to the cylinder center in compression stroke, and is shifted in the radial direction in expansion stroke.
Technical Paper

Gas Flows Through the Inter-Ring Crevice and Their Influence on UHC Emissions

1999-05-03
1999-01-1533
Influence of the inter-ring crevice, the volume between the top and second piston rings, on unburned hydrocarbon (UHC) emission was experimentally and numerically investigated. The ultimate goal of this study was to estimate the level of UHC emission induced by the blow-up of inter-ring mixture, i.e., unburned gases trapped in the inter-ring crevice. In the experiments, the inter-ring mixture was extracted to the crankcase during the late period of expansion and the early period of exhaust stroke through the engraved grooves on the lower part of cylinder wall. Extraction of the mixture resulted in the significant reductions of UHC emission in proportion to the increments of blowby flow rate, without any losses in efficiency and power. This experimental study has confirmed the importance of inter-ring crevice on UHC emission in an SI engine and established a relationship between the inter-ring mixture and UHC emission.
Technical Paper

Activities of the Federal Aviation Administration’s Aviation Weather Research Program

1999-04-20
1999-01-1578
Weather is a major cause of aircraft accidents and incidents and the single largest contributor to air traffic system delays. Through improvements in the knowledge of current weather conditions and reliable forecasts, the Federal Aviation Administration (FAA) can improve aviation safety, increase system capacity, and enhance flight planning and fuel efficiency. The FAA has established an Aviation Weather Research (AWR) program to address specific requirements for weather support to aviation by providing the capability to generate more accurate and accessible weather observations, warnings, and forecasts and also by increasing the scientific understanding of atmospheric processes that spawn aviation weather hazards. The goal of AWR is to provide meteorological research that leads to the satisfaction of specific aviation weather requirements.
Technical Paper

EC-Diesel Technology Validation Program Interim Report

2000-06-19
2000-01-1854
ARCO has developed diesel fuel called Emission Control Diesel (EC-D) that results in substantially lower exhaust emissions compared to a typical California diesel fuel. EC-D has ultra-low sulfur content, low aromatics, and has a high cetane number. EC-D is produced from typical crude oil using a conventional refining process. Initial engine laboratory tests and vehicle tests indicated that EC-D reduced regulated emissions while maintaining fuel economy, compared to a typical California diesel fuel. Ultra-low sulfur diesel fuels such as EC-D may enable the widespread use of passive catalyzed particulate filters for both new and existing diesel engines. The use of catalyzed particulate filters could allow large reductions of particulate matter emitted from vehicles. A one-year technology validation program is being run to evaluate EC-D and catalyzed particulate filters using diesel vehicles operating in Southern California.
Technical Paper

The Application of Ceramic and Catalytic Coatings to Reduce the Unburned Hydrocarbon Emissions from a Homogeneous Charge Compression Ignition Engine

2000-06-19
2000-01-1833
An experimental and theoretical study of the effect of thermal barriers and catalytic coatings in a Homogeneous Charge Compression Ignition (HCCI) engine has been conducted. The main intent of the study was to investigate if a thermal barrier or catalytic coating of the wall would support the oxidation of the near-wall unburned hydrocarbons. In addition, the effect of these coatings on thermal efficiency due to changed heat transfer characteristics was investigated. The experimental setup was based on a partially coated combustion chamber. The upper part of the cylinder liner, the piston top including the top land, the valves and the cylinder head were all coated. As a thermal barrier, a coating based on plasma-sprayed Al2O3 was used. The catalytic coating was based on plasma-sprayed ZrO2 doped with Platinum. The two coatings tested were of varying thickness' of 0.15, 0.25 and 0.6 mm. The compression ratio was set to 16.75:1.
Technical Paper

On-Board Hydrogen Generation for Rapid Catalyst Light-Off

2000-06-19
2000-01-1841
This paper describes an on-vehicle demonstration of a hydrogen-heated catalyst (HHC) system for reducing the level of cold-start hydrocarbon emissions from a gasoline-fueled light-duty vehicle. The HHC system incorporated an onboard electrolyzer that generates and stores hydrogen (H2) during routine vehicle operation. Stored hydrogen and supplemental air are injected upstream of a platinum-containing automotive catalyst when the engine is started. Rapid heating of the catalytic converter occurs immediately as a result of catalytic oxidation of hydrogen (H2) with oxygen (O2) on the catalyst surface. Federal Test Procedure (FTP) emission results of the hydrogen-heated catalyst-equipped vehicle demonstrated reductions of hydrocarbons (HC) and carbon monoxide (CO) up to 68 and 62 percent, respectively. This study includes a brief analysis of the emissions and fuel economy effects of a 10-minute period of hydrogen generation during the FTP.
Technical Paper

Measurement of Instantaneous Heat Flux Flowing Into Metallic and Ceramic Combustion Chamber Walls

2000-06-19
2000-01-1815
Accurate measurements of combustion gas temperature and the coefficient of heat transfer between the gas and the combustion chamber wall of internal combustion engine in cyclic operations are difficult at present. Hence the only method available for determination of states of thermal load and heat loss to the combustion chamber wall in a cycle is to measure the instantaneous temperature on the combustion chamber wall surface accurately and precisely using proper thin-film thermocouples, then to calculate the instantanenous heat flux flowing into the wall surface by means of numerical analysis. However, it is necessary to pay adequate attention to the effects of thermophysical properties of the thermocouple materials on the measured values, since any thermocouple consists of several kinds of materials which are different from those of portions to be measured.
Technical Paper

Combustion Behavior Analysis in a Transparent Research Engine Equipped with a Common Rail Diesel Injection System

2000-06-19
2000-01-1825
This paper describes a preliminary characterization of in-cylinder spray and combustion behavior from a high-pressure common rail injection system. The engine used in the tests was a single-cylinder optical research diesel engine, adequately developed in a full-fired version, equipped with a common rail injection system. An elongated piston allows for the optical access to the combustion chamber for diagnostic applications. Characteristic of the optical engine is the availability to investigate different combustion system designs due to an interchangeable head-cylinder group. The system configuration tested in the present work corresponds to a four-cylinder engine of 1930 cc of displacement that is representative in the class of light duty d.i. diesel engine. Spray and combustion evolutions were visualized through a high-speed CCD camera synchronized with a copper vapor laser acting as light source.
Technical Paper

The Influence of Swirl on HSDI Diesel Combustion at Moderate Speed and Load

2000-06-19
2000-01-1829
Heat release analysis of the in-cylinder pressure records and images of the naturally occurring combustion luminosity obtained in an optical engine are used to explore the effect of variable swirl ratio on the diesel combustion process. Swirl ratios Rs at IVC of 1.5, 2.5, and 3.5 were investigated. The engine is equipped with common-rail fuel injection equipment, and the combustion chamber geometry is maintained as close as possible to typical engines intended for automotive applications. The operating condition employed was 2000 rpm, with a gross IMEP of 5.0 bar and 800 bar injection pressure. Swirl ratio is found to exert a measurable influence on most of the combustion process, from ignition to late-cycle oxidation. Ignition delay decreases with increasing Rs, as do the magnitudes of the initial premixed burn, the peak rates of heat release, and the maximum rates of pressure rise.
Technical Paper

An Integrated Study of the Ford PRODIGY Aerodynamics using Computational Fluid Dynamics with Experimental Support

2000-04-02
2000-01-1578
The Ford P2000 prototype vehicle represents Ford Motor Company's commitment towards environmental stewardship through high fuel efficiency and low tailpipe emission. Low aerodynamic drag coefficient (Cd), weight reduction, and power train efficiency improvements are required in order to accomplish the overall fuel economy target. The objective of this study is to establish an aerodynamic efficient body shape (Cd = .20) that meets the cost, weight, styling, package and fuel economy targets. Furthermore, this vehicle must be able to be operated and manufactured. A new computational fluid dynamics (CFD) method based on a lattice gas approach was piloted for developing and evaluating body shape design alternatives in support of the P2000 PRODIGY aerodynamic objective. Wind tunnel tests were performed to further explore the aerodynamic opportunities that are beyond the capability of the computational method as well as validate the CFD prediction.
Technical Paper

Quantifying the Fuel Use and Greenhouse Gas Reduction Potential of Electric and Hybrid Vehicles

2000-04-02
2000-01-1581
Since 1989, the Northeast Sustainable Energy Association (NESEA) has organized the American Tour de Sol in which a wide variety of participants operate electric vehicles (EVs) and hybrid electric vehicles (HEVs) for several hundred miles under various roadway conditions (e.g., city center and highway). The event offers a unique opportunity to collect on-the-road energy efficiency data for these EVs and HEVs as well as comparable gasoline-fueled conventional vehicles (CVs) that are driven under the same conditions. NESEA and Argonne National Laboratory (ANL) collaborated on collecting and analyzing vehicle efficiency data during the 1998 and 1999 NESEA American Tour de Sols.
X