Refine Your Search

Topic

Author

Affiliation

Search Results

Book

Biofuels: Illusion or Reality?

2008-09-01
Environmental issues, rising prices and security of supply are putting energy at the center of all attention. Policymakers pushed by various stakeholders are struggling to find more sustainable solutions to the world’s legitimate demand for energy. The transport sector is especially under pressure as it relies up to 98% on oil. Despite vast research and development investments, no short-term solutions appeared to be reliable. Thanks to lawmakers’ support to biofuels, these substitutes for oil are now seen as the potential solution for a sustainable future in less polluting transportation alternatives. This book analyses the real possibility of biofuels in Europe. Does the region have enough land to produce the needed feedstock? What are the real gains in terms of greenhouse gases emissions and energy efficiency? Are biofuels really a sustainable solution? Will this policy succeed? Are the targets reachable?
Software

SAE Emissions Technology Collection

1998-02-04
Thank you for your interest in the SAE Emissions Technology Collection. This demo gives you an overview of the functionality of the product, illustrating the search interaction and the navigational features. You'll want to try a few searches so you can become familiar with the look and feel of the product and the navigational tools it offers. Please note: this demo does NOT provide you with the content of the product. It contains only one document to show you how you can link from the document summary to the full-text PDF. For information on the content of the product, please see the SAE website. You will be asked to login to the SAE Website before accessing the demo. This will require you to register as a new user if you do not already have an SAE Website account. Click on the following link to access the demo: If you have any questions, please e-mail CustomerService@sae.org or call 1-724-776-4970.
Collection

Advances in Catalyst Substrates, 2018

2018-04-03
Papers included in this collection cover the systems engineering experience required to achieve ultra-low emission levels on gasoline light-duty vehicles. Emission system component topics include the development of advanced three-way catalysts, the development of NOX control strategies for gasoline lean burn engines, the application of high cell density substrates to advanced emission systems, and the integration of these components into full vehicle emission systems.
Collection

Advances in NOx Reduction Technology, 2015

2015-04-14
This technical paper collection will focus on ‘Advances in NOx Reduction Technology’. The topics covered will include: new materials for lean NOx traps (LNT) and Selective Catalytic Reduction (SCR); system integration and durability; advances in NOx catalyst substrates, novel reductants and mixing designs.
Collection

Emission Measurement and Testing, 2014

2014-04-01
This technical paper collection covers emissions measuring techniques and testing regimes including new analysis techniques and the novel application of existing techniques, the comparison of existing and proposed testing regimes with real world experience, including modeling.
Technical Paper

The Modeling of Mold Filling in Structural Reaction Injection Molding

1996-04-01
91A118
The main use of FRC in automobiles, with the exception of a few specialized low volume vehicles, has been until now in semistructural parts. One of the most promising process in development today, that may play major role in future structural composite fabrication, is based on SRIM technology. The rapid and extensive introduction of this process goes also through the development of deeper theoretical knowledge of the process and the development of computer simulation to aid mold design and choice of proper processing parameters. To contribute SRIM advancement, a preliminary model has been developed for viscosity changes, extent of the reaction and temperature rises, associated with the mold filling stage, as well as a simple software to evaluate the pressure drop through different combinations of reinforcements.
Technical Paper

Particulate Reinforced Aluminum Matrix Composites Obtained By Indirect Squeeze-Casting

1996-04-01
91A115
Indirect squeeze casting technology is one of the most attractive fabrication techniques of near net shape components constituted by aluminum matrix composite (AMC) materials. AMCs reinforced with both continuous and discontinuous ceramic elements have been mainly produced by infiltration of porous preforms. Nevertheless, a further promising production route offered by this technique is given by the possibility to employ ingots of pre-reinforced aluminum alloys containing ceramic particles (silicon carbide or alumina); ingots are remelted and, under suitable operative conditions, high quality composite castings of simple and complex shape are produced by squeeze casting. The present paper describes the results of an extensive experimental work carried out by Alures-Centro Tecnico Porcessi on a pilot plant scale employing a vertical squeeze casting machine with a clamping force of 315 tons.
Technical Paper

Thermomechanical Behavior and Wear Resistance of Whisker Or Particle Reinforced Ceramics

1996-04-01
91A107
Ceramic composite materials have been intensively studied during the last years. Particles and whisker reinforcement have shown the simultaneous advantage to allow the preparation of composite materials by conventional processing and to lead, when under optimum conditions, to dramatic toughening and strengthening. Since wear resistance of brittle material have been shown to be related to both hardness and toughness, composite materials with improved were resistance have been developed for cutting tools or bearing applications. However the mechanism responsible for toughening is of major important for wear resistance effectiveness. We have therefore reviewed the main mechanisms before presenting some examples of composites materials for wear resistance applications.
Technical Paper

Reliability Improvement of Automotive Components By Surface Modification

1996-04-01
91A104
In this paper, several detailed studies on the surface properties of coatings are explained in order to make function of surface modification become more effective. As surface coatings, eletroless nickel plating, organic thin film, nitriding and antireflection coating by ultra fine particles are examined. Discussion of optimum production conditions and surface conditions for each coating is introduced.
Technical Paper

Trends and Forecasts for Turbocharging

1988-03-01
871147
Predictable and unpredictable forces will change the direction of the charge-air systems industry. The driver of diesel engine development will be the stringent emissions regulations of the 1990s. The drivers in the gasoline engine market will be improved fuel economy, performance, durability and emissions. Forces will also influence the charge-air marketplace, including changes in emission standards, national fiscal policies, political issues, fuel prices, alternate fuels and consumer tastes. The world community mandate for engines that are clean, quiet, durable and fuel efficient will be satisfied, increasingly, by first-tier component suppliers developing integrated systems solutions.
Technical Paper

U.S. and California Vehicle Emissions Control Programs Effectiveness and Application of Experience

1988-03-01
871148
Many areas of the world are in various stages of development which frequently includes a rapid increase in the motor vehicle population. As a result, some areas are beginning to show the effect of increased motor vehicle use on air pollution. The vehicle's contribution to California's air pollution has long been recognized and studied, and measures have been implemented to reduce emissions from motor vehicles. The history of light duty vehicle emission control in the South Coast Air Basin of California is reviewed. Emission reductions achieved, current levels, projected future emissions and the need for further emissions reductions from light duty vehicles are discussed. For other areas of the world where motor vehicles contribute to air pollution, suggestions are made which can improve the effectiveness of emission control efforts; which should be consistent with political and economic realities, and efforts to achieve international harmonization of standards.
Technical Paper

Performance and Exhaust Emission in Spark Ignition Engine Fueled with Methanol-Butane Mixture

1988-03-01
871165
To improve the cold startability of methanol, methanol-butane mixed fuel was experimented. Engine performance and exhaust emissions are obtained with methanol-butane mixed fuel. These characteristics are compared with those of methanol and gasoline. The mixing ratios of methanol and butane are 50:50 (M50), 80:20 (M80), and 90:10 (M90) based on the calorific value. As a result, M90 produces more power than gasoline and more or less than methanol depending on the engine speed and the excess air ratio. Brake horse power of M90 is higher than that of gasoline by 5 - 10 %, and brake specific fuel consumption is smaller than that of gasoline by 17 % to the maximum based on the calorific value. NOx emission concentrations for M90 are lower than those for gasoline and higher than those for methanol because of the effect of butane, CO emission concentrations are somewhat lower than those for methanol and gasoline.
Technical Paper

Development of STORM Series Diesel Engine (D1146, D1146T, D2366, D2366T)

1988-03-01
871218
For the purpose of satisfying today's market demands, new 8 and 11 liter diesel engines, named "STORM" series, have been developed and moved into production in 1986. Based on the predecessors which have been produced since 1975, the development of the STORM series aimed high performance, low emission, long life-time and low operating costs. In order to consult customers' convenience, exchangeability of engine parts and commonality of vehicle installations with the former engines had to be maintained. This paper describes the development work of STORM engines, and the design aspects and performance characteristics of these engines.
Technical Paper

Evaluation and Analysis of Strength of All-Ceramic Swirl Chamber for Diesel Engines

1988-03-01
871205
An all-ceramic swirl chamber has been developed and analyses and evaluations concerning the strength of silicon nitride ceramic (Si3N4) have been performed with a view to using it for the entire internal wall surface of the swirl chamber. The strength characteristics of Si3N4 and their effect and variation have been determined. On the basis of measurements and analyses of thermal stresses, assembling stresses, etc., investigation of the most suitable construction and assembling methods to reduce load stresses on ceramic, and various kinds of duration tests, the swirl chamber has been confirmed to have the required durability. This engine was found to comply with the 1987 U.S. diesel particulate regulation.
Technical Paper

A Procedure for Evaluating Cycle Emissions from Raw Exhaust Gas Analyses

1988-03-01
871194
A procedure has been developed for evaluating equivalent drive cycle emission results from raw exhaust gas emissions data obtained from an engine under test on a computer controlled Vehicle Simulator Engine Dynamometer. The emitted species data is integrated with the air intake flow rate to determine the total mass of emissions, after correcting for the reduction in exhaust gas mass due to precipitation of the moisture of combustion. This procedure eliminates the need for the Constant Volume Sample (CVS) System attached to the vehicle exhaust while undergoing simulated drive testing on a chassis dynamometer to evaluate compliance of the test vehicle with the Australian Design Rules, ADR27 and ADR37. Sources of error with the procedure are examined by comparing the fuel consumption measured using a volumetric technique during the test with that evaluated by a carbon balance procedure as given in the Australian Design Rules.
Technical Paper

Reconstruction of the Cylinder Pressure from Vibration Measurements for Prediction of Exhaust and Noise Emissions in Ethanol Engines

1999-05-17
1999-01-1658
There are growing demands for condition monitoring of IC engines, and therefore any method in order to improve the performance of the engines ought to be evaluated. This paper proposes a new approach for the prediction and optimisation of noise and exhaust emissions in IC engines. The idea is to reconstruct the cylinder pressure from vibration measurements on the engine surface by using the complex cepstrum method [3, 4]. The reconstructed cylinder pressure is further used as input in Multivariate models, based on cylinder pressure, for estimating noise and exhaust emissions. This paper demonstrates the applicability of the method for modelling of noise and exhaust emissions
Technical Paper

On the Influence of Manifold Geometry on Exhaust Noise

1999-05-17
1999-01-1650
The influence of manifold geometry on exhaust noise is studied. First, a linear description of the problem is presented, so that potential relevant factors may be identified. Then a full non-linear simulation is performed, for a simple geometry, in order to check, in more realistic conditions, the ideas obtained from the linear theory. The results indicate that, although some qualitative trends may be obtained from the linear analysis, the role of back-reaction of the manifold on the engine (a non-linear coupling effect) may be determinant.
Technical Paper

Effect of High Squish Combustion Chamber on Simultaneous Reduction of NOx and Particulate from a Direct-Injection Diesel Engine

1999-05-03
1999-01-1502
In this study it is tried to reduce NOx and particulate emissions simultaneously in a direct injection diesel engine based on the concept of two-stage combustion. At initial combustion stage, NOx emission is reduced with fuel rich combustion. At diffusion combustion stage, particulate emission is reduced with high turbulence combustion. The high squish combustion chamber with reduced throat diameter is used to realize two-stage combustion. This combustion chamber is designed to produce strong squish that causes high turbulence. When throat diameter of the high squish combustion chamber is reduced to some extent, simultaneous reduction of NOx and particulate emissions is achieved with less deterioration of fuel consumption at retarded injection timing. Further reduction of NOx emission is realized by reducing the cavity volume of the high squish combustion chamber. Analysis by endoscopic high speed photography and CFD calculation describes the experimental results.
Technical Paper

The Autoignition Behavior of Surrogate Diesel Fuel Mixtures and the Chemical Effects of 2-Ethylhexyl Nitrate (2-EHN) Cetane Improver

1999-05-03
1999-01-1504
The oxidation of surrogate diesel fuels composed of mixtures of three pure hydrocarbons with and without their cetane numbers chemically enhanced using 2-ethylhexyl nitrate (2-EHN) is studied in a variable pressure flow reactor over a temperature range 500 - 900 K, at 12.5 atmospheres and a fixed reaction time of 1.8 sec. Changes in both low temperature, intermediate temperature, and hot ignition chemical kinetic behavior are noted with changes in the fuel cetane number. Differences appear in the product distribution and in heat release generated in the low and intermediate temperature regimes as cetane number is increased. A chemically enhanced cetane fuel shows nearly identical oxidation characteristics to those obtained using pure fuel blends to produce the enhanced cetane value. The decomposition chemistry of 2-EHN was also studied. Pyrolysis data of 10% 2-EHN in n-heptane and toluene are reported.
X