Refine Your Search




Search Results



The purpose of this SAE Information Report is to provide general information relative to the nature and use of eddy current techniques for nondestructive testing. The document is not intended to provide detailed technical information but to serve as an introduction to the principles and capabilities of eddy current testing, and as a guide to more extensive references listed in Section 2.

Refrigerant 12 Automotive Air-Conditioning Hose

This SAE Standard covers reinforced hose, or hose assemblies, intended for conducting liquid and gaseous dichlorodifluoromethane (refrigerant 12) in automotive air-conditioning systems. The hose shall be designed to minimize permeation of refrigerant 12 and contamination of the system and to be serviceable over a temperature range of −30 to 120 °C (−22 to 248 °F). Specific construction details are to be agreed upon between user and supplier.1 NOTE—R12 refrigerant has been placed on a banned substance list due to its ozone depletion characteristics. SAE J51 specification will be phased out as new automotive A/C systems are using R134a. SAE J2064 is the Standard for refrigerant 134a hose. For refrigerant 134a use, refer to SAE J2064.

Multi-Dimensional Engine Modeling, 2018

This collection covers advances in the development and application of models and tools involved in multi-dimensional engine modeling: advances in chemical kinetics, combustion and spray modeling, turbulence, heat transfer, mesh generation, and approaches targeting improved computational efficiency. Papers employing multi-dimensional modeling to gain a deeper understanding of processes related to turbulent transport, transient phenomena, and chemically reacting, two-phase flows are included in this collection.

Spark Arrester Test Carbon

This SAE Standard establishes physical properties required of SAE Coarse Test Carbon and SAE Fine Test Carbon and establishes test methods to ensure that these requirements are met.

The Electric and Hybrid Electric Car

This book examines trends in electric car development from a global perspective, with many examples drawing from the author's own experiences in the American and European automotive industries. Beginning with the scientific discoveries that made electric vehicle technology possible at the outset of the 20th century, author Michael H. Westbrook provides a thorough discussion of the technology's early history. Though initially overtaken by the unstoppable rise of the internal combustion engine, interest in electric vehicles began to reappear in the 1960s due to their low-emissions potential. But it was not until the passage of a California law in 1990 mandating the sale of zero-emissions vehicles (ZEVs) that major automakers began serious development of the technology.

Fuel Cell Systems Explained, Second Edition

Fuel cell technology is developing at a rapid pace, thanks to the increasing awareness of the need for pollution-free power sources. Moreover, new developments in catalysts and improved reliability have made fuel cells viable candidates in a road range of applications, from small power stations, to cars, to laptop computers and mobile phones. Building on the success of the first edition, Fuel Cell Systems Explained presents a balanced introduction to this growing area. "In summary, an altogether satisfying book that puts within its covers the academic tools necessary for explaining fuel cell systems on a multidisciplinary basis." - Power Engineering Journal "An excellent book...well written and produced."- Journal of Power and Energy

Fuel Injection Equipment Nomenclature

This SAE Standard establishes a vocabulary and definitions relating to the components used in fuel injection systems for compression ignition (diesel) engines. Definitions are separated into six sections by topic as follows: Section 3— Fuel Injection Pumps Section 4— Fuel Injectors Section 5— Unit Injectors Section 6— Governors Section 7— Timing Devices Section 8— High Pressure Pipes and Connections NOTE— When the word "fuel" is used in the terms listed it may be omitted providing there can be no misunderstanding.

Split Type Bushings – Design and Application

This SAE Standard presents the standard sizes, important dimensions, specialized measurement techniques, and tolerances for split type bushings. Both SI and inch sizes are shown; their dimensions are not exact equivalents. New designs shall use SI units. Unless specifically stated as ±, all tolerances are total.

Socket Wrenches, Hand (Metric)

This SAE Aerospace Standard covers high strength commercial sockets and universal sockets which possess the strength, clearances, and internal wrenching design so configured that, when mated with hexagon (6 point) fasteners, they shall transmit torque to the fastener without bearing on the outer 5% of the fastener’s wrenching points. This document provides additional requirements beyond ANSI B107.5 appropriate for aerospace use. Inclusion of dimensional data in this document is not intended to imply all of the products described therein are stock production sizes. Consumers are requested to consult with manufacturers concerning lists of stock production sizes.

Sleeve Type Half Bearings

This SAE Standard defines the normal dimensions, dimensioning practice, tolerances, specialized measurement techniques, and glossary of terms for bearing inserts commonly used in reciprocating machinery. The standard sizes cover a range which permits a designer to employ, in proper proportion, the durability and lubrication requirements of each application, while utilizing the forming and machining practices common in manufacture of sleeve type half bearings. Not included are considerations of hydrodynamic lubrication analysis or mechanical stress factors of associated machine structural parts which determine the nominal sizes to be used, selection of bearing material as related to load carrying capacity, and economics of manufacture. For information concerning materials, see SAE J459 and SAE J460. These suggested sizes provide guidelines which may result in minimal costs of tooling but do not necessarily represent items which can be ordered from stock.