Refine Your Search

Topic

Author

Affiliation

Search Results

Video

Business Model for Successful Commercialization of Aircraft Designs

2012-03-21
This article characterizes the special features of drilling of CFRP/Titanium and -Aluminium stacks. Simplified theoretic models will show how CFRP/Titanium stacks should be machined without scratches and burn marks contacting carbon. Low axial forces and smart chip removal technology are the main characteristics of the drilling tool technology, optimized to reach H8 quality in one shot operation. Presenter Peter Mueller-Hummel, Cutting Tools Inc.
Video

Polycarbonate Glazing - Accelerated Wiper Testing, Surface Characterization and Comparison with On-Road Fleet Data

2012-05-23
Exatec� PC glazing technology team, has developed advanced weathering and abrasion resistant coatings technology that can be applied to protect polycarbonate. It is of particular interest to quantify and understand the factors that determine the surface abrasion performance of coated PC in rear window and backlight applications that have a wiper system. In the present study we describe Exatec's lab scale wiper testing equipment and test protocols. We also describe adaptation of optical imaging system to measure contrast and nano-profiling using nano-indenter, as post wiper surface characterization methods. These methods are more sensitive to fine scratches on glazing surface than standard haze measurement and mechanical profilometry. Three coating systems were investigated; Siloxane wetcoat (A), Siloxane wetcoat (B), and Siloxane wetcoat (B) plus plasma coat (Exatec� E900 coating). The performance comparisons were made using all these surface characterization methods.
Collection

CI & SI Power Cylinder Systems, 2014

2014-04-01
This technical paper collection covers the Power Cylinder: piston, piston rings, piston pins, and connecting rods. The papers include information on reducing friction and increasing fuel economy, improving durability by understanding wear, and decreasing oil consumption and blow-by.
Journal Article

Exhaust Manifold Thermal Assessment with Ambient Heat Transfer Coefficient Optimization

2018-06-04
Abstract Exhaust manifolds are one of the most important components on the engine assembly, which is mounted on engine cylinder head. Exhaust manifolds connect exhaust ports of cylinders to the turbine for turbocharged diesel engine therefore they play a significant role in the performance of engine system. Exhaust manifolds are subjected to very harsh thermal loads; extreme heating under very high temperatures and cooling under low temperatures. Therefore designing a durable exhaust manifold is a challenging task. Computer aided engineering (CAE) is an effective tool to drive an exhaust manifold design at the early stage of engine development. Thus advanced CAE methodologies are required for the accurate prediction of temperature distribution. However, at the end of the development process, for the design verification purposes, various tests have to be carried out in engine dynamometer cells under severe operating conditions.
Journal Article

3D Scene Reconstruction with Sparse LiDAR Data and Monocular Image in Single Frame

2017-09-23
Abstract Real-time reconstruction of 3D environment attributed with semantic information is significant for a variety of applications, such as obstacle detection, traffic scene comprehension and autonomous navigation. The current approaches to achieve it are mainly using stereo vision, Structure from Motion (SfM) or mobile LiDAR sensors. Each of these approaches has its own limitation, stereo vision has high computational cost, SfM needs accurate calibration between a sequences of images, and the onboard LiDAR sensor can only provide sparse points without color information. This paper describes a novel method for traffic scene semantic segmentation by combining sparse LiDAR point cloud (e.g. from Velodyne scans), with monocular color image. The key novelty of the method is the semantic coupling of stereoscopic point cloud with color lattice from camera image labelled through a Convolutional Neural Network (CNN).
Journal Article

Efficient Lane Detection Using Deep Lane Feature Extraction Method

2017-09-23
Abstract In this paper, an efficient lane detection using deep feature extraction method is proposed to achieve real-time lane detection in diverse road environment. The method contains three main stages: 1) pre-processing, 2) deep lane feature extraction and 3) lane fitting. In pre-processing stage, the inverse perspective mapping (IPM) is used to obtain a bird's eye view of the road image, and then an edge image is generated using the canny operator. In deep lane feature extraction stage, an advanced lane extraction method is proposed. Firstly, line segment detector (LSD) is applied to achieve the fast line segment detection in the IPM image. After that, a proposed adaptive lane clustering algorithm is employed to gather the adjacent line segments generated by the LSD method. Finally, a proposed local gray value maximum cascaded spatial correlation filter (GMSF) algorithm is used to extract the target lane lines among the multiple lines.
Journal Article

An Optical-Based Technique to Obtain Vibration Characteristics of Rotating Tires

2019-08-21
Abstract The dynamic characteristics of tires are critical in the overall vibrations of vehicles because the tire-road interface is the only medium of energy transfer between the vehicle and the road surface. Obtaining the natural frequencies and mode shapes of the tire helps in improving the comfort of the passengers. The vibrational characteristics of structures are usually obtained by performing conventional impact hammer modal testing, in which the structure is excited with an impact hammer and the response of the structure under excitation is captured using accelerometers. However, this approach only provides the response of the structure at a few discrete locations, and it is challenging to use this procedure for rotating structures. Digital Image Correlation (DIC) helps in overcoming these challenges by providing the full-field response of the structure.
Journal Article

Effects of Reflux Temperature and Molarity of Acidic Solution on Chemical Functionalization of Helical Carbon Nanotubes

2017-09-19
Abstract The use of nanomaterials and nanostructures have been revolutionizing the advancements of science and technology in various engineering and medical fields. As an example, Carbon Nanotubes (CNTs) have been extensively used for the improvement of mechanical, thermal, electrical, magnetic, and deteriorative properties of traditional composite materials for applications in high-performance structures. The exceptional materials properties of CNTs (i.e., mechanical, magnetic, thermal, and electrical) have introduced them as promising candidates for reinforcement of traditional composites. Most structural configurations of CNTs provide superior material properties; however, their geometrical shapes can deliver different features and characteristics. As one of the unique geometrical configurations, helical CNTs have a great potential for improvement of mechanical, thermal, and electrical properties of polymeric resin composites.
Journal Article

Sliding Mode Control of Hydraulic Excavator for Automated Grading Operation

2018-06-07
Abstract Although ground grading is one of the most common tasks that hydraulic excavators perform in typical work sites, proper grading is not easy for less-skilled operators as it requires coordinated manipulation of multiple hydraulic cylinders. In order to help alleviate this difficulty, automated grading systems are considered as an effective alternative to manual operations of hydraulic excavators. In this article, a sliding mode controller design is presented for automated grading control of a hydraulic excavator. First, an excavator manipulator model is developed in Simulink by using SimMechanics and SimHydraulics toolboxes. Then, a sliding mode controller is designed to control the manipulator to trace a predefined trajectory for a grading task. For a comparison study, a PI controller is used to control the manipulator to perform a grading task following the same desired trajectory and the performance is compared with those obtained by the sliding mode controller.
Journal Article

Effect of Tool Tilt Angles on Mechanical and Microstructural Properties of Friction Stir Welding of Dissimilar Dual-Phase 600 Steel and AA6082-T6 Aluminum Alloy

2020-09-09
Abstract The present study aims to join the dissimilar materials such as Dual-Phase (DP) 600 Steel and AA6082-T6 Aluminum (Al) alloy via the friction stir welding (FSW) process with a reduced intermetallic compound (IMC) layer. The five different tool tilt angles of 0°, 0.5°, 1°, 1.5°, and 2° were selected to fabricate the joints. The weld characteristics such as tensile strength, hardness, macrostructure, and microstructure were analyzed. The weld interface was studied by employing an optical microscope and scanning electron microscope (SEM) equipped with energy-dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD) techniques. The joint produced with a 0.5° tilt angle has achieved the highest ultimate tensile strength (UTS) of 240 MPa. The IMCs were identified as Fe2Al8 and FeAl2 from the joint interface studies.
Journal Article

Process-Structure-Property Relationship in Dissimilar Al-High-Strength Steel Impact Spot Welds Created Using Vaporizing Foil Actuator Welding

2020-09-09
Abstract Vaporizing foil actuator welding (VFAW) created nominally solid-state spot welds between high-strength DP980 steel and 6022 T4 aluminum. The effects of varying the impact velocity and angle between the Al flyer and target steel sheets on the structure and properties of the joints were evaluated using photonic Doppler velocimetry (PDV), scanning electron microscopy (SEM), fractography, and energy-dispersive spectroscopy (EDS) analysis. The incident angle and velocity of the flyer plate were quantified using PDV, and their relations to the structure and properties of the joint were assessed with microscopy and strength testing. Impact velocity and average impact angle increase with the increasing standoff. Lower impact angles and higher impact velocities promoted interfacial failure due to increased melting, higher intermetallic thickness, and lower wave amplitude and wavelength.
Journal Article

The Effect of Current Mode on the Crack and Failure in the Resistance Spot Welding of the Advanced High-Strength DP590 Steel

2020-09-09
Abstract The causes of failure due to cracking in the resistance spot welding of the advanced high-strength steels dual-phase 590 (DP590) were investigated using scanning electron microscopy (SEM), optical microscopy, and the tensile-shear test. The results showed that by increasing the current amount, the formation of the melting zone occurred in the heat-affected zone, leading to the cracking in this area, reducing the tensile strength and decreasing the mechanical properties; the initiation and growth of cracking and failure in this region also happened. In the heat-affected zone, by increasing the current amount with the softening phenomenon, the recrystallized coarse grains also occurred, eventually resulting in the loss of mechanical properties. The results of the tensile-shear test also indicated that by increasing the current up to 12 kA, the strength was raised, but the ductility was reduced.
Journal Article

Semi-empirical Combustion Efficiency Prediction of an Experimental Air-Blasted Tubular Combustor

2020-10-19
Abstract The preliminary gas turbine combustor design process uses a huge amount of empirical correlations to achieve more optimized designs. Combustion efficiency, in relation to the basic dimensions of the combustor, is one of the most critical performance parameters. In this study, semi-empirical correlations for combustion efficiencies are examined and correlation coefficients have been revised using an experimental air-blasted tubular combustor that uses JP8 kerosene aviation fuel. Besides, droplet diameter and effective evaporation constant parameters have been investigated for different operating conditions. In the study, it is observed that increased air velocity significantly improves the atomization process and decreases droplet diameters, while increasing the mass flow rate has a positive effect on the atomization—the relative air velocity in the air-blast atomizer increases and the fuel droplets become finer.
Journal Article

Influence of Injection Timing and Piston Bowl Geometry on PCCI Combustion and Emissions

2009-04-20
2009-01-1102
Premixed Charge Compression Ignition (PCCI), a Low Temperature Combustion (LTC) strategy for diesel engines is of increasing interest due to its potential to simultaneously reduce soot and NOx emissions. However, the influence of mixture preparation on combustion phasing and heat release rate in LTC is not fully understood. In the present study, the influence of injection timing on mixture preparation, combustion and emissions in PCCI mode is investigated by experimental and computational methods. A sequential coupling approach of 3D CFD with a Stochastic Reactor Model (SRM) is used to simulate the PCCI engine. The SRM accounts for detailed chemical kinetics, convective heat transfer and turbulent micro-mixing. In this integrated approach, the temperature-equivalence ratio statistics obtained using KIVA 3V are mapped onto the stochastic particle ensemble used in the SRM.
Journal Article

Sources of UHC Emissions from a Light-Duty Diesel Engine Operating in a Partially Premixed Combustion Regime

2009-04-20
2009-01-1446
Sources of unburned hydrocarbon (UHC) emissions are examined for a highly dilute (10% oxygen concentration), moderately boosted (1.5 bar), low load (3.0 bar IMEP) operating condition in a single-cylinder, light-duty, optically accessible diesel engine undergoing partially-premixed low-temperature combustion (LTC). The evolution of the in-cylinder spatial distribution of UHC is observed throughout the combustion event through measurement of liquid fuel distributions via elastic light scattering, vapor and liquid fuel distributions via laser-induced fluorescence, and velocity fields via particle image velocimetry (PIV). The measurements are complemented by and contrasted with the predictions of multi-dimensional simulations employing a realistic, though reduced, chemical mechanism to describe the combustion process.
Journal Article

Influence of Diesel Injection Parameters on End-of-Injection Liquid Length Recession

2009-04-20
2009-01-1356
Diesel injection parameters effect on liquid-phase diesel spray penetration after the end-of-injection (EOI) is investigated in a constant-volume chamber over a range of ambient and injector conditions typical of a diesel engine. Our past work showed that the maximum liquid penetration length of a diesel spray may recede towards the injector after EOI at some conditions. Analysis employing a transient jet entrainment model showed that increased fuel-ambient mixing occurs during the fuel-injection-rate ramp-down as increased ambient-entrainment rates progress downstream (i.e. the entrainment wave), permitting complete fuel vaporization at distances closer to the injector than the quasi-steady liquid length. To clarify the liquid-length recession process, in this study we report Mie-scatter imaging results near EOI over a range of injection pressure, nozzle size, fuel type, and rate-of-injection shape. We then use a transient jet entrainment model for detailed analysis.
Journal Article

Study of the Mixing and Combustion Processes of Consecutive Short Double Diesel Injections

2009-04-20
2009-01-1352
The mixing and combustion processes of short double Diesel injections are investigated by optical diagnostics. A single hole Common Rail Diesel injector allowing high injection pressure up to 120MPa is used. The spray is observed in a high pressure, high temperature cell that reproduces the thermodynamic conditions which exist in the combustion chamber of a Diesel engine during injection. Three configurations are studied: a single short injection serving as a reference case and two double short injections with short and long dwell time (time between the injections). Several optical diagnostics were performed successively. The mixing process is studied by normalized Laser Induced Exciplex Fluorescence giving access to the vapor fuel concentration fields. In addition, the flow fields both inside and outside the jets are characterized by Particle Imaging Velocimetry.
Journal Article

Optimizing Precision and Accuracy of Quantitative PLIF of Acetone as a Tracer for Hydrogen Fuel

2009-04-20
2009-01-1534
Quantitative planar laser-induced fluorescence (PLIF) of gaseous acetone as a fuel-tracer has been used in an optically accessible engine, fueled by direct hydrogen injection. The purpose of this article is to assess the accuracy and precision of the measurement and the associated data reduction procedures. A detailed description of the acetone seeding system is given as well. The key features of the experiment are a high-pressure bubbler saturating the hydrogen fuel with acetone vapor, direct injection into an optical engine, excitation of acetone fluorescence with an Nd:YAG laser at 266 nm, and detection of the resulting fluorescence by an unintensified camera. Key steps in the quantification of the single-shot imaging data are an in-situ calibration and a correction for the effect of local temperature on the fluorescence measurement.
Journal Article

Advanced Control System of Variable Compression Ratio (VCR) Engine with Dual Piston Mechanism

2009-04-20
2009-01-1063
A dual piston Variable Compression Ratio (VCR) engine has been newly developed. This compact VCR system uses the inertia force and hydraulic pressure accompanying the reciprocating motion of the piston to raise and lower the outer piston and switches the compression ratio in two stages. For the torque characteristic enhancement and the knocking prevention when the compression ratio is being switched, it is necessary to carry out engine controls based on accurate compression ratio judgment. In order to accurately judge compression ratio switching timing, a control system employing the Hidden Markov Model (HMM) was used to analyze vibration generated during the compression ratio switching. Also, in order to realize smooth torque characteristics, an ignition timing control system that separately controls each cylinder and simultaneously performs knocking control was constructed.
X