Refine Your Search




Search Results


Camera-based Light Measurement Techniques

This recommended practice describes the application of digital cameras to measurement of photometric quantities in the photometric laboratory.

Fatigue Modeling/Testing & CAE Durability Analysis, 2017

This collection of papers focus on state-of-the-art fatigue theory and advanced development in fatigue testing, material behavior under cyclic loading, and fatigue analysis methodology & research in the ground vehicle industry. Studies and discussions on innovative and improved fatigue theory/methods in will be discussed along with and engineering applications of CAE durability analysis.

A New Policy for COTS Selection: Overcome the DSM Reliability Challenge

Up to now, the reliability achieved by COTS components was largely sufficient for avionics, in terms of failure rate as well as time to failure. With the implementation of new and more integrated technologies (90 nm node, 65 nm and below), the question has arisen of the impact of the new technologies on reliability. It has been stated that the lifetime of these new technologies might decrease. The drift is expected to be technology dependent: integration, technology node, materials, elementary structure choices and process pay a key role. Figures have been published, which gives smaller lifetime than the 30 years generally required for avionics. This would of course impact not only the reliability, but also the maintenance of COTS-based avionics. Hence a new policy should be defined for the whole COTS supply chain. Faced with these impending risks, different methodologies have been developed.

Spotlight on Design: Composite Materials: Advanced Materials and Lightweighting

“Spotlight on Design” features video interviews and case study segments, focusing on the latest technology breakthroughs. Viewers are virtually taken to labs and research centers to learn how design engineers are enhancing product performance/reliability, reducing cost, improving quality, safety or environmental impact, and achieving regulatory compliance. In the episode “Composite Materials: Advanced Materials and Lightweighting” (30:20), Molded Fiber Glass Companies, known for its deep involvement in the creative development of the molded fiberglass process for the Corvette, demonstrates the manufacturing of sheet molded composite for fiberglass parts. Tanom Motors introduces the Tanom Invader, a blend between an automobile and a motorcycle made exclusively with composite materials. Finally, Euro-Composites demonstrates the manufacturing of honeycomb core material made out of aramid paper and phenolic resin used in aircraft structures.

Spotlight on Design Insight: Diagnostics and Prognostics: Telematics Deep Dive

“Spotlight on Design: Insight” features an in-depth look at the latest technology breakthroughs impacting mobility. Viewers are virtually taken to labs and research centers to learn how design engineers are enhancing product performance/reliability, reducing cost, improving quality, safety or environmental impact, and achieving regulatory compliance. Telematics, the convergence of telecommunications and informatics, uses electronic and computer technology built in to the vehicle to provide vehicle tracking, satellite navigation, wireless technology, and diagnostic information. In the episode “Diagnostics and Prognostics: Telematics Deep Dive” (8:09), an engineer from Delphi’s Telematics program discusses the advantages and challenges of telematics devices for the automotive industry, demonstrates the installation of an aftermarket telematics device, and shows how telematics can enhance diagnostics and preventative maintenance.

Spotlight on Design Insight: Sensors: Fluid Measurements and Avionics

“Spotlight on Design: Insight” features an in-depth look at the latest technology breakthroughs impacting mobility. Viewers are virtually taken to labs and research centers to learn how design engineers are enhancing product performance/reliability, reducing cost, improving quality, safety or environmental impact, and achieving regulatory compliance. The quality of fluids used in aviation, such as oil or fuel, is an extremely important safety issue. One way to reliably monitor fluids is through the use of special measurement sensors. In the episode “Fluid Measurements and Avionics” (9:13), an engineer at Meggitt demonstrates the capabilities of time-domain reflectometry sensors, explaining how they are assembled and used. The business case for monitoring oil and fuel degradation, and how to proactively take advantage of preventative maintenance is also explained.

Biodiesel Permeability in Polyethylene

This paper reports solubility, diffusivity and permeability data for soy and rapeseed methyl esters in polyethylene together with comparisons with methyl oleate and linoleate. These data were used to discuss the reliability of predictive models for diffusion and solubility of additive type molecules into semi-crystalline thermoplastic polymers. Presenter Emmanuel Richaud

Development of Scratch Resistant Clear Coat for Automotive

Scratch resistance is one of the most important customer requirements for automotive painting. Scratches occur as a result of a load being imposed on a paint film, which then destroys or deforms it. In order to improve the scratch resistance properties of clear coat, a specially developed molecular that act to accelerate closslinking reaction was added to the clear coat main resin. This developed molecular facilitates closslinking between multiple molecules and creates an unprecedentedly fine molecular structure. The result is a soft, highly elastic, and durable clear coat with improved resistance to light and acid as well as enhanced deformation recovery properties. It requires no special maintenance, prevents luster degradation caused by surface scratches and helps to prolong new-car color and gloss. Developmental Clear Coat is introduced into the flagship of the Lexus range - the LS as Self-restoring Coat in 2009. Presenter Junya Ogawa, Developmental Center

Building Security In: The SPARK Approach to Software Development

Software products in the automotive industry are by nature widely distributed and costly to update (recall), so high reliability is clearly of utmost importance. Just as clearly, the increasing reliance on remote access to such systems, for diagnostic and other purposes, has made security an essential requirement, and traditional techniques for software development are proving to be inadequate in dealing with these issues. Correctness by Construction is a software design and development methodology that builds reliability and security into the system from the start. It can be used to demonstrate, with mathematical rigor, a program's correctness properties while reducing the time spent during testing and debugging. This paper will discuss the use of Correctness by Construction, and its accompanying SPARK language technology, to improve automotive systems' security and reliability. (The approach can also account for safely issues, although that is not the focus of this paper.)

Test Method for Seat Wrinkling and Bagginess

This study evaluates utilizing an accelerated test method that correlates customer interaction with a vehicle seat where bagginess and wrinkling is produced. The evaluation includes correlation from warranty returns as well as test vehicle results for test verification. Consumer metrics will be discussed within this paper with respect to potential application of this test method, including but not limited to JD Power ratings. The intent of the test method is to aid in establishing appropriate design parameters of the seat trim covers and to incorporate appropriate design measures such as tie downs and lamination. This test procedure was utilized in a Design for Six Sigma (DFSS) project as an aid in optimizing seat parameters influencing trim cover performance using a Design of Experiment approach. Presenter Lisa Fallon, General Motors LLC

Component Interoperability For Automotive Safety Issues

There is a need to accelerate the automotive industry's alert notification and distribution process for quality, reliability, counterfeit, and safety issues that reside in specific electronic components or circuit card assemblies. This paper describes an alert procedure for an entire supply chain that can improve operational efficiency and reduce the costs associated with responding to and resolving those issues. Interoperability: Ability to work with each other. It is frequently unnecessary for separate resources to know the details of how they each work. But they need to have enough common ground to reliably exchange messages quickly without error or misunderstanding. Presenter William Crowley, QTEC Inc.

Enabling Exponential Growth of Automotive Network Devices while Reducing the Wired Communication Infrastructure with Security, Reliability, and Safety

The CAN protocol has served the automotive and related industries well for over twenty-five (25) years now; with the original CAN protocol officially released in 1986 followed by the release of CAN 2.0 in 1991. Since then many variants and improvements in CAN combined with the proliferation of automotive onboard microprocessor based sensors and controllers have resulted in CAN establishing itself as the dominant network architecture for automotive onboard communication in layers one (1) and two (2). Going forward however, the almost exponential growth of automotive onboard computing and the associated devices necessary for supporting said growth will unfortunately necessitate an equivalent growth in the already crowded wired physical infrastructure unless a suitable wireless alternative can be provided. While a wireless implementation of CAN has been produced, it has never obtained real traction within the automotive world.

Hidden Costs in Motor Specifications

It is a challenge to write a good motor specification. Typical spec. problems are omitted or ambiguous requirements, or overly tight tolerances that drive up cost but not value. These problems create hidden penalties in cost, performance, reliability, and development time. This presentation will describe common problems in traction motor specifications and associated penalties, as well as recommendations to avoid them. Topics will include spec.?s for demagnetization, mechanical considerations, torque ripple, performance, and others. Presenter David A. Fulton, Remy Inc.

Supplier Management

This standard establishes methods to be used by organizations when achieving compliance to customer and purchaser requirements in supplier management related activities. The intent of standardization is to increase supply chain efficiency and reduce non-compliance through alignment of customer requirements.

Quality Audit Requirements

The project will cover three areas (step 1 New Production): define a standard approach for the internal audit system used by the supplier to ensure that it has the correct scope and effectiveness the effectiveness of AS9100 and Nadcap third party assessment define a standard/common approach for the audit of supplier´s production and process to be used by engine manufacturers, suppliers and the sub tiers based on result/confidence in 1) and 2)

AS13100 AESQ Quality Management Requirements

The scope of this standard is the Aero Engine Supplier Quality supply chain. The standard will harmonise the requirements of RR, GE, P&W and Safran into a single document supported by existing AS standards where relevant.
Technical Paper

Service Aviation, Aeronautical Engineering and Commercial Aviation

INFLUENCE that the research and development work done in aeronautics by the naval and military services has had in the advancement of design and construction of airplanes and aircraft engines suitable for commercial operations is pointed out and exemplified by citing a few instances of direct adaptability of military types of airplane to commercial uses. Nearly all of this work would have been done much later or not at all if the airplane had been purely a commercial vehicle, but the constructor for purely commercial purposes and the commercial operator have had the benefit of it. Major fundamentals, such as speed, safety, reliability and economy, are the same in both types of aviation; divergencies between the requirements for the two kinds of service begin to appear in materiel, personnel, or methods of operation only at a somewhat advanced stage of evolution.
Technical Paper

Powerplant Economics - Piston Displacement versus Horsepower per Dollar

AN ENDEAVOR is made herein by the author to prove by argument and charts based on data that the greatest result per dollar of car cost is obtained by the greatest piston displacement obtainable per dollar expended rather than by the greatest horsepower per dollar. Maximum result per dollar is a major principle of economics, but horsepower per dollar and piston displacement per dollar are controversial economic fundamentals. The latter is declared to be the accepted principle in the low-price car field, and the author asserts that it should be accepted in the high-price field. Price class controls the cost of the powerplant, and ingenuity of the engineering and manufacturing departments will control piston displacement. The trends in the different price classes as regards car weight, piston displacement, ratio of weight to piston displacement, and potential and actual performance in the items of economy, durability, acceleration and speed, are shown by charts and discussed.
Technical Paper

Commercial Flight Tests Improved by New Equipment and Methods

THE purpose of this paper is to show that the value of commercial flight-testing depends largely upon the utility, reliability and accuracy of the equipment and instruments employed. In general, it is found that improvements in these three factors depend largely on the simplicity of the apparatus used. Special engine-tests have led to the development of instruments and apparatus not commonly available commercially, and the use of these has made it possible to employ the aircraft engine as an instrument for the measurement of power in flight. This ability to measure power has led to the development of a method of making comparative engine-temperature and other tests which eliminates or corrects for a number of the major variables ordinarily affecting such tests. Because of the increasing popularity of the controllable-angle propeller, tests are also described which enable one to determine the value of such a propeller when only an adjustable-angle propeller is available.
Technical Paper


After indicating the line of development since November, 1918, toward making the internal-combustion engine better adapted to aircraft service, the successful application of the supercharger to improve engine performance at great altitude is described and the over-dimensioned and over-compressioned engine also is discussed as a means toward that end. The use of anti-knock compounds to permit the use of high compression-ratios at small altitudes without knocking is commented upon and engine size is considered for both airplane and dirigible service. Further review includes air-cooling experiments in reference to the air-cooled radial engine, refinement of aviation-engine details, and improvements in aircraft powerplant parts and fuel-supply systems. For commercial aviation, powerplant reliability and low cost are stated as essentials. Illustrations are presented of the supercharger and of the engines and sylphon fuel-pump mentioned.