Refine Your Search

Search Results

Viewing 1 to 12 of 12
Technical Paper

Lumbar Spine Fractures in Undercarriage Impacts: Analysis of 1997-2015 NASS-CDS

2018-04-03
2018-01-0546
Objective: This is a descriptive study of the incidence of spinal injury by crash type using NASS-CDS. It provides an understanding of impacts to the undercarriage of the vehicle and injuries to the lumbar spine by reviewing electronic cases in NASS-CDS to determine crash circumstances for fractures of the lumbar spine with undercarriage impacts. Methods: 1997-2015 NASS-CDS was evaluated for serious injury (MAIS 3 + F) to front-seat occupants by seatbelt use and crash type in 1994+ MY vehicles. Undercarriage impacts were defined by GAD1 = U without a rollover. Serious injury was defined as MAIS 3 + F. Spinal injuries AIS 3+ were separated into cervical, thoracic and lumbar regions. Weighted data was determined using ratio weight. NASS-CDS electronic cases were downloaded from NHTSA with AIS 3+ lumbar spine injuries in undercarriage impacts. Results: There were 2,160 MAIS 3 + F injured occupants in undercarriage impacts. This was 0.23% of all serious injury.
Technical Paper

Quantification of Sternum Morphomics and Injury Data

2019-04-02
2019-01-1217
Crash safety researchers have an increased concern regarding the decreased thoracic deflection and the contributing injury causation factors among the elderly population. Sternum fractures are categorized as moderate severity injuries, but can have long term effects depending on the fragility and frailty of the occupant. Current research has provided detail on rib morphology, but very little information on sternum morphology, sternum fracture locations, and mechanisms of injury. The objective of this study is two-fold (1) quantify sternum morphology and (2) document sternum fracture locations using computed tomography (CT) scans and crash data. Thoracic CT scans from the University of Michigan Hospital database were used to measure thoracic depth, manubriosternal joint, sternum thickness and bone density. The sternum fracture locations and descriptions were extracted from 63 International Center for Automotive Medicine (ICAM) crash cases, of which 22 cases had corresponding CT scans.
Book

Occupant and Vehicle Responses in Rollovers

2004-03-08
During the past decade, there has been a steady increase in studies addressing rollover crashes and injuries. Though rollovers are not the most frequent crash type, they are significant with respect to serious injury and interest in rollovers has grown with the introduction of SUVs, vans, and light trucks. A review of Occupant and Vehicle Responses in Rollovers examines relevant conditions for field roll overs, vehicle responses, and occupant kinetics in the vehicle. This book edited by Dr. David C. Viano and Dr. Chantal S. Parenteau includes 62 technical documents covering 15 years of rollover crash safety, including field crash statistics, pre- and rollover dynamics, test procedures and dummy responses.
Technical Paper

US and UK Field Rollover Characteristics

2001-03-05
2001-01-0167
In this study, US and UK accident data were analyzed to identify parameters that may influence rollover propensity to analyze driver injury rate. The US data was obtained from the weighted National Automotive Sampling System (NASS-CDS), calendar years 1992 to 1996. The UK pre-roll data was obtained from the national STATS 19 database for 1996, while the injury information was collected from the Co-operative Crash Injury Study (CCIS) database. In the US and UK databases, rollovers accounted for about 10% of all crashes with known crash directions. In the US and UK databases, most rollovers occurred when the vehicle was either going straight ahead or turning. The propensity for a rollover was more than 3 times higher when going around a bend than a non-rollover. In the UK, 74% of rollovers occurred on clear days with no high winds and 14% on rainy days with no high winds. In the US, 83% of rollovers took place in non-adverse weather conditions and 10% with rain.
Technical Paper

Case Study of Vehicle Maneuvers Leading to Rollovers: Need for a Vehicle Test Simulating Off-Road Excursions, Recovery and Handling

2003-03-03
2003-01-0169
Rollovers are an important vehicle safety issue. Various technologies have been developed to help prevent rollovers from occurring, but the evaluation of rollover resistance typically involves vehicle-handling tests that are conducted on flat road surfaces with a uniform or split coefficient of friction. The purpose of this study is to determine the precipitating events leading to rollovers by analyzing real-world rollover crashes. This is a first step in identifying and developing vehicle tests that are representative of the principal driving scenarios leading to rollovers. The sequence of events leading to rollovers was determined from 63 in-depth investigated cases in the NASS-CDS database from 1995-1999. The sequence was evaluated by vehicle maneuvers, vehicle stability, surface type, road and shoulder transition condition, posted and estimated speeds, vehicle type and driver injury severity.
Technical Paper

Evaluation of Laminated Side Window Glazing Coding and Rollover Ejection Mitigation Performance Using NASS-CDS

2020-04-14
2020-01-1216
Occupant ejection has been identified as a safety problem for decades, particularly in rollover crashes. While field accident studies have repeatedly demonstrated the effectiveness of seat belts in mitigating rollover ejection and injuries, the use of laminated glass in side window positions has been suggested as a means to mitigate occupant ejection. Limited data is available on the field performance of laminated glass in preventing ejection. This study utilized 1997-2015 NASS-CDS data to investigate the reliability of the glazing coding variables in the database and determine if any conclusions can be drawn regarding the effect of different side window glazing types on occupant ejection. An initial query was run for 1997-2016 model year vehicles involved in side impacts to evaluate glazing coding within NASS-CDS.
Technical Paper

Influence of DISH, Ankylosis, Spondylosis and Osteophytes on Serious-to-Fatal Spinal Fractures and Cord Injury in Rear Impacts

2019-04-02
2019-01-1028
Seats have become stronger over the past two decades and remain more upright in rear impacts. While head restraints are higher and more forward providing support for the head and neck, serious-to-fatal injuries to the thoracic and cervical spine have been seen in occupants with spinal disorders, such as DISH (diffuse idiopathic skeletal hyperostosis), ankylosis, spondylosis and/or osteophytes that ossify the joints in the spine. This case study addresses the influence of spinal disorders on fracture-dislocation and spinal cord injury in rear impacts with relatively upright seats. Nineteen field accidents were investigated where serious-to-fatal injuries of the thoracic and cervical spine occurred with the seat remaining upright or slightly reclined. The occupants were lap-shoulder belted, some with belt pretensioning and cinching latch plate.
Technical Paper

Characterization of Thoracic Spinal Development by Age and Sex with a Focus on Occupant Safety

2020-04-14
2020-01-0520
Spine degeneration can lower injury tolerance and influence injury outcomes in vehicle crashes. To date, limited information exists on the effect of age and sex on thoracic spine 3-dimensional geometry. The purpose of this study is to quantify thoracic spinal column and canal geometry using selected geometrical measurement from a large sample of CT scans. More than 33,488 scans were obtained from the International Center for Automotive Medicine database at the University of Michigan under Institutional Review Board approval (HUM00041441). The sample consisted of CT scans obtained from 31,537 adult and 1,951 pediatric patients between the ages of 0 to 99 years old. Each scan was processed semi-automatically using custom algorithms written in MATLAB (The Math Works, Natick, MA). Five geometrical measurements were collected including: 1) maximum spinal curvature depth (D), 2) T1-to-T12 vertical height (H), 3) Kyphosis Index (KI), 4) kyphosis angle, and 5) spinal canal radius.
Technical Paper

The Effect of Obesity on Rollover Ejection and Injury Risks

2020-04-14
2020-01-1219
Obesity rates are increasing among the general population. This study investigates the effect of obesity on ejection and injury risk in rollover crashes through analysis of field accident data contained in the National Automotive Sampling System-Crashworthiness Data System (NASS-CDS) database. The study involved front outboard occupants of age 15+ years in 1994+ model year vehicle rollover crashes. Occupants were sorted into two BMI groups, normal (18.5 kg/m2 ≤ BMI < 25.0 kg/m2) and obese (BMI ≥30 kg/m2). Complete and partial ejection risks were first assessed by seating location relative to roll direction and belt use. The risk of serious-to-fatal injuries (MAIS 3+F) in non-ejected occupants were then evaluated. The overall risk for complete ejection was 2.10% ± 0.43% when near-sided and 2.65% ± 0.63% when far-sided, with a similar risk for both the normal and obese BMI groups.
Technical Paper

Near and Far-Side Adult Front Passenger Kinematics in a Vehicle Rollover

2001-03-05
2001-01-0176
In this study, U.S. accident data was analyzed to determine interior contacts and injuries for front-seated occupants in rollovers. The injury distribution for belted and unbelted, non-ejected drivers and right front passengers (RFP) was assessed for single-event accidents where the leading side of the vehicle rollover was either on the driver or passenger door. Drivers in a roll-left and RFP in roll-right rollovers were defined as near-side occupants, while drivers in roll-right and RFP in roll-left rollovers were defined as far-side occupants. Serious injuries (AIS 3+) were most common to the head and thorax for both the near and far-side occupants. However, serious spinal injuries were more frequent for the far-side occupants, where the source was most often coded as roof, windshield and interior.
Technical Paper

Analysis of Rear Seat Sled Tests with the 5th Female Hybrid III: Incorrect Conclusions in Bidez et al. SAE 2005-01-1708

2019-04-02
2019-01-0618
Objective: Sled test video and data were independently analyzed to assess the validity of statements and conclusions reported in Bidez et al. SAE paper 2005-01-1708 [7]. Method: An independent review and analysis of the test data and video was conducted for 9 sled tests at 35 km/h (21.5 mph). The 5th female Hybrid III was lap-shoulder belted in the 2nd or 3rd row seat of a SUV buck. For one series, the angle was varied from 0, 15, 30, 45 and 60 deg PDOF. The second series involved shoulder belt pretensioning and other belt modifications. Results: Bidez et al. [7] claimed “The lap belts moved up and over the pelvis of the small female dummy for all impact angles tested.” We found that there was no submarining in any of the tests with the production lap-shoulder belts. Bidez et al. [7] claimed “H3-5F dummies began to roll out of their shoulder belt at… 30 degrees. Complete loss of torso support was seen at 45 degrees without significant kinetic energy dissipation.”
Technical Paper

Dual-Recliner ABTS Seats in Severe Rear Sled Testswith the 5th, 50th and 95th Hybrid III

2021-04-06
2021-01-0917
Seat strength has increased over the past four decades which includes a transition to dual recliners. There are seat collision performance issues with stiff ABTS and very strong seats in rear impacts with different occupant sizes, seating positions and physical conditions. In this study, eight rear sled tests were conducted in four series: 1) ABTS in a 56 km/h (35 mph) test with a 50th Hybrid III ATD at MGA, 2) dual-recliner ABTS and F-150 in a 56 km/h (35 mph) test with a 5th female Hybrid III ATD at Ford, 3) dual-recliner ABTS in a 48 km/h (30 mph) test with a 95th Hybrid III ATD leaning inboard at CAPE and 4) dual-recliner ABTS and Escape in 40 km/h (25 mph) in-position and out-of-position tests with a 50th Hybrid III ATD at Ford. The sled tests showed that single-recliner ABTS seats twist in severe rear impacts with the pivot side deformed more rearward than the stanchion side.
X