Refine Your Search




Search Results


Factory Man

Factory Man is about James Harbour and the epic struggle of the U.S. auto industry to catch up to Japan in quality and productivity. Harbour is a former manufacturing executive who, partly by chance, became the first U.S. expert to study Toyota's operations in Japan. Harbour's consulting firm, Harbour & Associates has gained worldwide recognition for its annual public studies of factory productivity. The Harbour Report is the essential annual scorecard of who is winning the productivity race in the U.S. In 1981, Harbour reported that Toyota could offer a small car for sale in the U.S. at a production cost of $1,500-$1,700 less than the Detroit automakers at that time, a cost advantage of about 30 percent. The impact on Detroit was atomic, and launched the painful, historic effort by the Big Three to catch up, which continues today. James Harbour's story, blunt and accessible, includes a detailed description of how Detroit went astray, beginning right after World War II.

Toyota Kata

This game-changing book puts you behind the curtain at Toyota, providing new insight into the legendary automaker's management practices and offering practical guidance for leading and developing people in a way that makes the best use of their brainpower. Drawing on six years of research into Toyota's employee-management routines, Toyota Kata examines and elucidates, for the first time, the company's organizational routines—called kata—that power its success with continuous improvement and adaptation. The book also reaches beyond Toyota to explain issues of human behavior in organizations and provide specific answers to questions such as: • How can we make improvement and adaptation part of everyday work throughout the organization? • How can we develop and utilize the capability of everyone in the organization to repeatedly work toward and achieve new levels of performance?

Everything Works Wonderfully

EVERYTHING WORKS WONDERFULLY is a 250-page A4 softback book written to provide a structured source of guidance and reference information on Servitization and the management of physical assets for people at all levels in industry: • Senior executives considering the expansion of their businesses into the provision of Asset Management services for the products they design and manufacture; • Middle management wishing to know what needs to be done to look after the assets they are responsible for and who to approach for help; • ‘Hands-on’ engineers looking for contacts and advice on detailed tools and techniques. • Academics may also find the book useful as a source of contacts and ideas for research.

Toyota R&D Technical Review 2012

“Japanese Originality” is the theme of 2012 Toyota Technical Review, which brings twelve articles written by designers and engineers, about the creativity, inspiration and commitment to develop products that enchant their users. The book also brings eight additional articles, more technical in nature, that prove the results of original thinking applied to engineering excellence.

Toyota R&D Technical Review 2009

Giving unique insight into Toyota's 2009 technical developments, this book includes 24 papers that chronicle the Japanese OEM's R&D activities during that year. This volume has a special focus on automotive safety and ITS, and 12 of the papers highlight developments in those areas. Title highlights include: Safety and ITS • The Evolution of GOA for Crash Safety • Pre-Crash Safety: Autonomous Integrated Safety Technology • Assist System for Enhancing Driver Vision at Night Other Technical Areas • A Study on Friction Materials for Reducing Brake Squeal by Nanotechnology • Newly Developed AR Engine Series • Development of Bio-Based Plastics for Injection Molding

Toyota Technical Review 2010

Giving unique insight into Toyota's 2010 technical developments, this book includes 19 papers that chronicle the Japanese OEM's R&D activities in a variety of technologies during that year. This volume takes a special look at the Prius, Toyota's popular hybrid, along with other technical innovations. Title highlights include: Prius Technology • Hybrid Technologies in the 3rd Generation Prius • Chassis Development for the 3rd Generation Prius • Design of the Prius as an Eco-Icon Other Technical Areas • Introduction of the World's First Rear Seat Occupant Restraint System for Rear-End Collisions • Development of Fuel Consumption Estimation Technology Using VHDL-AMS • Development of Electrode Structure for High Performance Fuel Cell Using CAE

Toyota R&D Technical Review 2011

Giving unique insight into Toyota's 2011 technical developments, this book includes 18 papers that chronicle the Japanese OEM's R&D activities in a variety of technologies during that year. This volume has a special focus on next-generation electric storage, and 10 of the papers highlight developments in such things as batteries, fuel cells and next-generation energy. Title highlights include: Next Generation Electric Storage and Its Applications • Secondary Battery Development for Hybrid Vehicles at Toyota • Development Trends and Popularization Trends for Fuel Cell Vehicles • Renewable Energy and Its Effective Usage Other Technical Areas • Drivetrain Development for the Lexus LFA • Development of Scratch-Resistant Universal Clear Coat • Development of Environmentally Friendly Machining Process for Aluminum Parts

Automotive Engineering: June 2018

Underway on nuclear power Ford Motor Co. CTO Dr. Ken Washington is driving new approaches to technology innovation—from inside and outside the enterprise. Silicon drives autonomy movement Renesas’ Amrit Vivekanand explains how the software and semiconductors that underlie the industry’s rapid transition are rapidly evolving. Automotive propulsion ‘On a journey’ CTO Jeff Hemphill explains how Schaeffler Group is blending its longstanding mechanical-systems expertise with critical investment in electrification and autonomy. Steeling for reduced mass and higher strength New 3rd-generation AHSS and steel-polymer hybrid tech aim to cut mass by up to 30%—and take a bite out of aluminum’s business. Balancing the rumble and roar Multiphysics simulation is part of the development toolset at Mahindra Two Wheelers, as the Indian motorcycle and scooter maker expands into global markets with larger bikes. Le Mans 2018: can anyone beat Toyota’s hybrids?
Technical Paper

Surface Treatments and Characterization of Electroplated and Hot Dip Galvanized Steel Sheets

Protection of surfaces is a critical factor in determining the extended service life of a structure in polluted and aggressive environments. In particular, a rapid growth of the technology for the protecting coating of cold rolled steel is experienced, for the use in transport, electric housewares, building and industrial plants. Numerous changes have taken place in the production of zinc coatings on steel in order to improve the corrosion resistance using zinc alloy platings. Our research group collected from the international production a number of selected galvanized steel samples, including electrodeposited zinc alloys, multilayer coatings, hot dip galvanized steels. On the selected materials we established and analyzed morphology, composition, crystal structure, impurity content and distribution, using many surface microanalysis techniques.
Technical Paper

New Materials and Experiences for the Industrialization of Pu Structural Rim Technology

Processes involving use of reactive polymers received recently considerable attention also for producing components suitable for automotive structural applications. In particular polyurethane structural RIM technology seems to be the route of choice in terms of productivity, reliability and physico- mechanical performances in order to fit the automotive industry needs in the production of parts requiring superior load bearing properties. In this frame the development of long pot life snap-cure resins, fast and effective reinforcement preforming techniques as well as the development of computerized provisional processing methodologies are of paramount importance in view of industrialization of the technology. In this paper a description of the work carried out by Enichem Montedipe and Montedison is given. In particular a new family of PU systems, based on special isocyanate variants, is reported.
Technical Paper

Particulate Reinforced Aluminum Matrix Composites Obtained By Indirect Squeeze-Casting

Indirect squeeze casting technology is one of the most attractive fabrication techniques of near net shape components constituted by aluminum matrix composite (AMC) materials. AMCs reinforced with both continuous and discontinuous ceramic elements have been mainly produced by infiltration of porous preforms. Nevertheless, a further promising production route offered by this technique is given by the possibility to employ ingots of pre-reinforced aluminum alloys containing ceramic particles (silicon carbide or alumina); ingots are remelted and, under suitable operative conditions, high quality composite castings of simple and complex shape are produced by squeeze casting. The present paper describes the results of an extensive experimental work carried out by Alures-Centro Tecnico Porcessi on a pilot plant scale employing a vertical squeeze casting machine with a clamping force of 315 tons.
Technical Paper

Glass Reinforced Thermoplastic Composites: Effects of Ribs and Different Types of Reinforcement on the Characteristics of the Molded Part

Compression molding of thermoplastic sheets, consolidated or non- consolidated, reinforced with glass fibers (GMT, GRT) is applied as an economic production process in the automotive industry. The aim of this work is to evaluate how the physical and mechanical strength characteristics depend on the presence or absence of ribs and how component performance may be changed by modifying the molding parameters, altering the content and orientation of the reinforcement fibers in the ribbed areas. For this purpose, two statistical designs will be considered, the first carried out on a box type component without ribs, the second on the same component with a set of internal ribs. Two different materials with a PP matrix will be tested, a GMT reinforced with continuous random glass fibers and a 12 mm random glass fibers composite.
Technical Paper

Evaluation of Advanced Aluminum Alloys and Mmc Obtained By Means of a Spray Depositon Approach

The paper review some recent efforts, made by the aluminum industry, towards the development of new advanced alloys for aerospace applications; unconventional production technologies and MMC occupy an outstanding position in this context. Raid solidification processes are currently used for obtaining advanced alloys and, among them, the powder metallurgy route is one of the most commonly applied, since it has reached a considerable level of maturity. Experimental results of PM materials are shown and discussed in order to appreciate the potentialities of this class of materials and some recent further progress is shown: the spray deposition approach (osprey process). After having described the main features of the osprey process, some results obtained at the Department of Aerospace Engineering of Pisa about the development of high strength Al-alloy and MMC obtained by means of the osprey process are shown.
Technical Paper

Casting and Characterization of An Aluminum Alloy Car Engine Bracket Produced By Squeeze Casting Technology

The following paper describes the experimental activity regarding the setting-up and characterization of a car engine bracket in Al-Si12Cu2FeZn-F alloy produced by the new technology squeeze casting. LExperimentation was carried out at the Alures squeeze casting pilot plant. Static and dynamic characterization (fatigue resistance on test samples and the component itself) was carried out at Teksid and Fiat Auto. Characterization test have demonstrated the considerable advantages offered by the new technology compared with conventional production processes.
Technical Paper

Devleopment and Industrial Realization of Glass Mat Preforming Equipment for Rtm and Shim

As a result of the rapid expansion of liquid molding in closed mold, fiberglass mat performers have rapidly changed in order to meet the high production requirements. The reasons for this interest in RTM and SRIM can be found in the considerable benefits offered by this technology which include: 1) ability to produce very large parts (weights up to 70 kg are currently being prototyped); 2) continuous and homogeneous reinforcement or even predetermined distribution of the reinforcement in the mold; 3) the ability to produce structures using cores of various types; and 4) the ability to use large inserts, even if they are metallic. The creation and development of this technology has been possible thanks to the introduction of very low viscosity reactive polymers. These materials permits very fast impregnation of the reinforcement in the closed model, thereby decreasing the cure time and the overall cycle time.
Technical Paper

Advances in Thermoset Injection Molding

Injection molding of thermosetting materials such as low profile SMC/BMC composites found increasing application in the transportation industry in the eighties. Such automotive parts as front end panels and rear/hatchback doors have grown in usage. The rear doors have reached exceptional production levels of 2600/day in a single plant. The injection process offers the advantages of greater automation for the mass production of body panel parts compared in compression molding. However, the injection molding of fiber reinforced low profile composites suffers from a severe reduction in physical properties. This is particularly true for impact strength which can be one-third that of similar compression molding materials. A primary reason for this is due to the degradation of the reinforcement during the processing/molding. Efforts at increasing the physical properties through processing changes have many times caused problems with the surface smoothness of the moldings.
Technical Paper

Reliability Improvement of Automotive Components By Surface Modification

In this paper, several detailed studies on the surface properties of coatings are explained in order to make function of surface modification become more effective. As surface coatings, eletroless nickel plating, organic thin film, nitriding and antireflection coating by ultra fine particles are examined. Discussion of optimum production conditions and surface conditions for each coating is introduced.
Technical Paper

Structual Problems in the Design of a Car-Component in a Composite Material

The paper summarizes the results of an experimental and numerical study performed on the rear door of a car of large production. It was carried out with a DMC ("dough molding compound") plastic material with short glass fibers. This technology makes strong the link between the production process and the mechanical properties of the component. Such properties really vary according to the fibers orientation, the distance from the injection points and the geometrical complexity of the different regions of the molded component. In some regions the fibers orientation is well defined, in others the orientation can be expressed only in average tendency terms, with a large scatter band. It is natural to think that the material modifies its behavior from region to region, showing marked orthotropic properties or, on the contrary, a compensation isotropic trend.
Technical Paper

Development of STORM Series Diesel Engine (D1146, D1146T, D2366, D2366T)

For the purpose of satisfying today's market demands, new 8 and 11 liter diesel engines, named "STORM" series, have been developed and moved into production in 1986. Based on the predecessors which have been produced since 1975, the development of the STORM series aimed high performance, low emission, long life-time and low operating costs. In order to consult customers' convenience, exchangeability of engine parts and commonality of vehicle installations with the former engines had to be maintained. This paper describes the development work of STORM engines, and the design aspects and performance characteristics of these engines.
Technical Paper

The Next Step in Acoustical Part Weight Reduction

Weight reduction with maintained part performance is a continuing trend throughout the automotive industry. Acoustical insulation parts (carpet underlay and dash insulators) are no exception. Several years ago, ICI Polyurethanes led the industry in establishing a molded density standard of 48 kg/m3. Although this is the current production standard, the technology drive is toward even lower weights. Recent technological demonstrations show that molded densities of 35-38 kg/m3 are achievable. In addition to removing weight, acoustical performance can be maintained with no deficiencies in physical characteristics.