Refine Your Search

Topic

Author

Affiliation

Search Results

Standard

Brake Rotor Thickness Variation and Lateral Run-Out Measurements

2015-10-02
WIP
J3111
The scope of this recommended practice is to establish definitions and recommended methods for the measurement of lateral run-out and disc thickness variation in the laboratory and vehicle for passenger cars and light duty trucks up to 4546 kg gross vehicle weight. This recommended practice will breakdown the instrumentation (sensors and sizes), test setup, and data processing.
Standard

Component Level EPB Actuation NVH

2018-01-10
WIP
J3165
The component level EPB actuation NVH task force should review existing specifications and measurement methods used in the industry to find any commonalities and propose a recommended method for measuring and evaluating component level EPB actuation NVH to be used as a common standard throughout the industry. The task force should acknowledge the following objectives: 1. Task force should review existing industry specifications and further define the scope for creating the new standalone component level EPB actuation NVH standard a. The common standard should be universally recognized and accepted by the automotive industry b. Provide confidence that acceptable vehicle related NVH results will be achieved if vehicle level testing is completed c. Provide clear verifiable acceptance criteria 2. Task force must lay out steps and timing to complete the development of the new common standard. 3.
Standard

Dynamometer Low-Frequency Brake Noise Test Procedure

2017-07-18
WIP
J3002
This procedure will outline the necessary test equipment (fixturing, dynamometer, data acquisition system, etc.) and test sequence required to test for low-frequency brake noise on a brake noise dynamometer. It is intended to complement SAEJ2521, which focuses on high-frequency brake squeal.
Standard

Measurement of Tire/Pavement Noise Using Sound Intensity

2009-11-04
WIP
J2920
This standard specifies an engineering method for measuring acoustic power per unit area at points near the tire/pavement interface. The measurement quantifies the acoustic radiated sound intensity from the tire/pavement interface. This standard may be used to measure the sound intensity of varying tires and/or surfaces, over various operating conditions of the tire, or changes in surface characteristics.
Collection

Powertrain NVH, 2017

2017-03-28
The papers in this collection reflect the recent advances on the research, development and practices of Powertrain NVH treatment. The technical papers are of interest to powertrain system designers, testing specialists, NVH experts, and other individuals who evaluate and develop technologies to control powertrain NVH. The coverage includes: engine, engine subsystem and components noise and vibration; powertrain systems noise measurement and instrumentation; powertrain systems noise analysis.
Video

Can America Plug In?

2011-11-04
There are many macro drivers that are creating opportunities for transportation electrification. They include the environment, dependence on foreign oil, national security, battery technology and government incentives to name a few. In light of this growing momentum consumers will have choices to where they can charge ? at home, workplace or publicly. Electrical vehicle supply equipment will drive value throughout the supply chain ? installer, building owner, automaker, suppliers, utilities and consumers. Market acceptance will occur when consumer?s needs and wants are met. To meet these needs access to products through multiple channels will be required. Presenter Manoj Karwa, Leviton Manufacturing Co. Inc.
Video

OBD Approval Process

2012-01-24
The OBD approval process can be a frustrating time for both manufacturer and ARB staff. For manufacturers, a long approval process can sometimes mean accepting deficiencies prematurely in exchange for an approval. For ARB staff, they are inundated with highly technical information which they must review, garner understanding of and then apply their experience to evaluate it for compliance. OBD approval anxiety can be minimized, if not avoided, when manufacturers understand ARB�s expectations. This presentation will take you through some unwritten rules and common pitfalls which can impede the approval process, thus providing a guideline to a less painful and more efficient certification document review and approval. Presenter Mark Frank, Winterpark Engineering Llc
Video

Technical Keynote: State-of-Art of Moire Method and Applications to Shape, Displacement and Strain Measurement

2011-11-17
Moir� method is useful to measure the shape and the whole-field distributions of displacement and strain of structures. There are many kinds of moir� methods such as geometric moir� method, sampling moir� method, Fourier transform moir� method, moir� interferometry, shadow moir� method and moir� topography. Grating method analyzing directly deformation of a grating without any moir� fringe pattern is considered as an extended technique of moire method. Phase analysis of the moire fringe patterns and the grating patterns provides accurate measurements of shapes or displacement and strain distributions. Some applications of these moir� methods and grating methods to dynamic shape and strain distribution measurements of a rotating tire, sub-millimeter displacement measurements from long distance for landslide prediction, real-time shape measurements with micro-meter order accuracy, etc. are shown. Presenter Yoshiharu Morimoto, Moire Institute Inc.
Video

Fault-Tree Generation for Embedded Software Implementing Dual-Path Checking

2011-11-17
Given the fast changing market demands, the growing complexity of features, the shorter time to market, and the design/development constraints, the need for efficient and effective verification and validation methods are becoming critical for vehicle manufacturers and suppliers. One such example is fault-tree analysis. While fault-tree analysis is an important hazard analysis/verification activity, the current process of translating design details (e.g., system level and software level) is manual. Current experience indicates that fault tree analysis involves both creative deductive thinking and more mechanical steps, which typically involve instantiating gates and events in fault trees following fixed patterns. Specifically for software fault tree analysis, a number of the development steps typically involve instantiating fixed patterns of gates and events based upon the structure of the code. In this work, we investigate a methodology to translate software programs to fault trees.
Video

The Correlation of As-Manufactured Products to As-Designed Specifications: Closing the Loop on Dimensional Quality Results to Engineering Predictions

2012-03-09
Simulation-based tolerance analysis is the accepted standard for dimensional engineering in aerospace today. Sophisticated 3D model-based tolerance analysis processes enable engineers to measure variation in complex, often large, assembled products quickly and accurately. Best-in-class manufacturers have adopted Quality Intelligence Management tools for collecting and consolidating this measurement data. Their goal is to completely understand dimensional fit characteristics and quality status before commencing the build process. This results in shorter launch cycles, improved process capabilities, reduced scrap and less production downtime. This paper describes how to use simulation-based approaches to correlate the theoretical tolerance analysis results produced during engineering simulations to actual as-built results. This allows engineers to validate or adjust as-designed simulation parameters to more closely align to production process capabilities.
Video

Visionary's Take: An Engineering Journey into the Marketplace (Part 3 of 3)

2017-10-12
Can you become a visionary or are you born one? How does a visionary capture an opportunity and makes it a successful business? Are engineers more qualified to solve technical problems or run companies? SAE's "The Visionary's Take" addresses these and many other questions, by talking directly with those who have dared to tackle difficult engineering problems, and create real-life products out of their experience. In these short episodes, Sanjiv Singh and Lyle Chamberlain, respectively CEO and Chief Engineer from Near Earth Autonomy, talk about their experience in creating a brand-new company in the UAV world. Founded in 2011, Near Earth Autonomy brought together a group of engineers and roboticists, looking for unconventional solutions to very hard logistics problems, presenting danger to human life. The answers were developed by pushing technology to a higher level, testing quickly and often, and keeping an open mind to alternative ways of framing engineering challenges.
Video

Visionary's Take: An Engineering Journey into the Marketplace (Part 1 of 3)

2017-10-12
Can you become a visionary or are you born one? How does a visionary capture an opportunity and makes it a successful business? Are engineers more qualified to solve technical problems or run companies? SAE's "The Visionary's Take" addresses these and many other questions, by talking directly with those who have dared to tackle difficult engineering problems, and create real-life products out of their experience. In these short episodes, Sanjiv Singh and Lyle Chamberlain, respectively CEO and Chief Engineer from Near Earth Autonomy, talk about their experience in creating a brand-new company in the UAV world. Founded in 2011, Near Earth Autonomy brought together a group of engineers and roboticists, looking for unconventional solutions to very hard logistics problems, presenting danger to human life. The answers were developed by pushing technology to a higher level, testing quickly and often, and keeping an open mind to alternative ways of framing engineering challenges.
Video

A New Policy for COTS Selection: Overcome the DSM Reliability Challenge

2012-03-13
Up to now, the reliability achieved by COTS components was largely sufficient for avionics, in terms of failure rate as well as time to failure. With the implementation of new and more integrated technologies (90 nm node, 65 nm and below), the question has arisen of the impact of the new technologies on reliability. It has been stated that the lifetime of these new technologies might decrease. The drift is expected to be technology dependent: integration, technology node, materials, elementary structure choices and process pay a key role. Figures have been published, which gives smaller lifetime than the 30 years generally required for avionics. This would of course impact not only the reliability, but also the maintenance of COTS-based avionics. Hence a new policy should be defined for the whole COTS supply chain. Faced with these impending risks, different methodologies have been developed.
Video

Spotlight on Design: Counterfeit Electronic Parts: Supply Chains at Risk

2015-04-15
“Spotlight on Design” features video interviews and case study segments, focusing on the latest technology breakthroughs. Viewers are virtually taken to labs and research centers to learn how design engineers are enhancing product performance/reliability, reducing cost, improving quality, safety or environmental impact, and achieving regulatory compliance. Just how prevalent is the problem of counterfeit electronic parts? What are the consequences of using sub-par components in safety or mission critical systems? The Federal Aviation Administration estimates that 2% of the 26 million airline parts installed each year are counterfeit, accounting for more than 520,000 units, maybe more.
Video

Spotlight on Design Insight: Sensors: Noise Avoidance and Cable Manufacturing

2015-05-07
“Spotlight on Design: Insight” features an in-depth look at the latest technology breakthroughs impacting mobility. Viewers are virtually taken to labs and research centers to learn how design engineers are enhancing product performance/reliability, reducing cost, improving quality, safety or environmental impact, and achieving regulatory compliance. Extreme environment sensors require extreme environment cables that can reliably perform in temperatures up to 2300° F, withstand intense vibration, and have extraordinary strength. In the episode “Sensors: Noise Avoidance and Cable Manufacturing” (8:53), an engineer at Meggitt Sensing Systems demonstrates the intricate process of developing cable for sensors used in these situations.
Video

Composite Predictive Engineering Studies - American Chemistry Council Plastics Division

2012-05-29
Since 2006 Oak Ridge National Labs (ORNL) and the Pacific Northwest National Labs (PNNL) have conducted research of injection molded long glass fiber thermoplastic parts funded by U.S. DOE. At DOE's request, ACC's Plastics Division Automotive Team and USCAR formed a steering committee for the National Labs, whose purpose was to provide industry perspective, parts materials and guidance in processing. This ACC affiliation enabled the plastics industry to identify additional key research requirements necessary to the success of long glass fiber injection molded materials and their use in the real world. Through further cooperative agreements with Autodesk Moldflow and University of Illinois, a new process model to predict both fiber orientation distribution and fiber length distribution is now available. Mechanical property predictive tools were developed and Moldflow is integrating these models into their software.
Video

5000 Hours Aging of THERBAN® (HNBR) Elastomers in an Aggressive Biodiesel Blend

2012-05-23
TERBAN® hydrogenated nitrile rubber (HNBR) is a specialty elastomer used in demanding engineering applications such as the automotive, heavy duty, and industrial markets. It has excellent combination of heat, oil and abrasion resistance in addition to its high mechanical strength, very good dynamic and sealing properties. This paper will present data on aging HNBR for five thousand hours in an aggressive and un-stabilized B30A biodiesel fuel blend (70% ULSD, 30% SME, and an aggressive additive package) and explore the effect of HNBR polymer properties and vulcanizate composition on the performance in such fuel blends. Presenter Victor Nasreddine
Video

Component Interoperability For Automotive Safety Issues

2012-05-22
There is a need to accelerate the automotive industry's alert notification and distribution process for quality, reliability, counterfeit, and safety issues that reside in specific electronic components or circuit card assemblies. This paper describes an alert procedure for an entire supply chain that can improve operational efficiency and reduce the costs associated with responding to and resolving those issues. Interoperability: Ability to work with each other. It is frequently unnecessary for separate resources to know the details of how they each work. But they need to have enough common ground to reliably exchange messages quickly without error or misunderstanding. Presenter William Crowley, QTEC Inc.
X