Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Friction Calculations and Validation Measures on an External Component Test Bench of the Piston Pin Bearing under the Influence of Greater Elastic Deformation Caused by a Hydrostatic Bearing

2021-09-05
2021-24-0001
Increasing combustion pressure, low viscosity oils, less oil supply and the increasing stress due to downsizing of internal combustion engines (ICE) lead to higher loads within the bearing. As the mechanical and tribological loads on the piston pin bearings have a direct impact on the service life and function of the overall engine system, it is necessary to develop a robust tribological design approach. Regarding the piston pin bearing of a diesel engine, this study aims to describe the effects of different parameters on a DLC-coated piston pin within the bearing. Therefore, an external engine part test rig, which applies various forces to the connecting rod and measures the torque on a driven pin, is used to carry out validation measurements. The special feature of the test bench is the way the piston is beared. For the first experiments, the piston crown is placed against a plate (plate-bearing); later, this plate-bearing is replaced by a hydrostatic bearing.
Technical Paper

Investigation of the Gas Exchange (Scavenging) on a Single-Scroll Turbocharged Four Cylinder GDI Engine

2016-04-05
2016-01-1024
For scavenging the combustion chamber during the gas exchange, a temporary positive pressure gradient between the intake and the exhaust is required. On a single-scroll turbocharged four cylinder engine, the positive pressure gradient is not realized by the spatial separation of the exhaust manifold (twin-scroll), but by the use of suitable short exhaust valve opening times. In order to avoid any influence of the following firing cylinder onto the ongoing scavenging process, the valve opening time has to be shorter than 180 °CA. Such a short valve opening time has both, a strong influence on the gas exchange at the low-end torque and at the maximum engine power. This paper analyzes a phenomenon, which occurs due to short exhaust valve opening durations and late valve timings: A repeated compression of the burned cylinder charge after the bottom dead center, referred to as “recompression” in this paper.
Technical Paper

Numerical and Experimental Studies on Mixture Formation with an Outward-Opening Nozzle in a SI Engine with CNG-DI

2016-04-05
2016-01-0801
CNG direct injection is a promising technology to promote the acceptance of natural gas engines. Among the beneficial properties of CNG, like reduced pollutants and CO2 emissions, the direct injection contributes to a higher volumetric efficiency and thus to a better driveability, one of the most limiting drawbacks of today’s CNG vehicles. But such a combustion concept increases the demands on the injection system and mixture formation. Among other things it requires a much higher flow rate at low injection pressure. This can be only provided by an outward-opening nozzle due to its large cross-section. Nevertheless its hollow cone jet with a specific propagation behavior leads to an adverse fuel-air distribution especially at higher loads under scavenging conditions. This paper covers numerical and experimental analysis of CNG direct injection to understand its mixture formation.
Technical Paper

An Investigation of Sub-Synchronous Oscillations in Exhaust Gas Turbochargers

2015-09-06
2015-24-2531
Due to the demands for today's passenger cars regarding fuel consumption and emissions, exhaust turbo charging has become a fundamental step in achieving these goals. Especially in upper and middle class vehicles it is also necessary to consider the noise comfort. Today, floating bushings are mainly used as radial bearings in turbochargers. In the conventional operating range of the turbocharger dynamic instability occurs in the lubrication films of the bearings. This instability is transferred by structure-borne noise into audible airborne sound and known as constant tone phenomenon. This phenomenon is not the major contributor of the engine noise but its tonal character is very unpleasant. In order to gain a more detailed understanding about the origin of this phenomenon, displacement sensors have been applied to the compressor- and the turbine-side of the rotor, to be able to determine the displacement path.
Technical Paper

Friction Reduction by Optimization of Local Oil Temperatures

2019-09-09
2019-24-0177
The reduction of engine-out emissions and increase of the total efficiency is a fundamental approach to reduce the fuel consumption and thus emissions of vehicles driven by combustion engines. Conventional passenger cars are operated mainly in lower part loads for most of their lifetime. Under these conditions, oil temperatures are far below the maximum temperature allowed and dominate inside the journal bearings. Therefore, the objective of this research was to investigate possible potentials of friction reduction by optimizing the combustion engine’s thermal management of the oil circuit. Within the engine investigations, it was shown that especially the friction of the main and connecting rod bearings could be reduced with an increase of the oil supply temperature. Furthermore, on a journal bearing test rig, it was shown that no excessive wear of the bearings is to be expected in case of load increase and simultaneous supply of cooler oil.
Technical Paper

Valve Flow Coefficients under Engine Operation Conditions: Piston Influence and Flow Pulsation

2019-09-09
2019-24-0003
Engine valve flow coefficients are used to describe the flow throughput performance of engine valve/port designs, and to model gas exchange in 0D/1D engine simulation. Valve flow coefficients are normally determined at a stationary flow test bench, separately for intake and exhaust side, in the absence of the piston. However, engine operation differs from this setup; i. a. the piston might interact with valve flow around scavenging top dead center, and instead of steady boundary conditions, valve flow is nearly always subjected to pressure pulsations, due to pressure wave reflections within the gas exchange ports. In this work the influences of piston position and flow pulsation on valve flow coefficients are investigated for different SI engine geometries by means of 3D CFD and measurements at an enhanced flow test bench.
Technical Paper

Valve Flow Coefficients under Engine Operation Conditions: Pressure Ratios, Pressure and Temperature Levels

2019-01-15
2019-01-0041
Engine valve flow coefficients are not only used to characterize the performance of valve/port designs, but also for modelling gas exchange in 0D/1D engine simulation. Flow coefficients are usually estimated with small pressure ratios and at ambient air conditions. In contrast, the ranges for pressure ratio, pressure and temperature level during engine operation are much more extensive. In this work the influences of these three parameters on SI engine poppet valve flow coefficients are investigated using 3D CFD and measurements for validation. While former investigations already showed some pressure ratio dependencies by measurement, here the use of 3D CFD allows a more comprehensive analysis and a deeper understanding of the relevant effects. At first, typical ranges for the three mentioned parameters during engine operation are presented.
X