Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Lower Extremity and Brake Pedal Interaction in Frontal Collisions: Sled Tests

1998-02-23
980359
A series of eight sled tests was conducted using Hybrid III dummies and cadavers in order to examine the influence of foot placement on the brake pedal in frontal collisions. The brake pedal in the sled runs was fixed in a fully depressed position and the occupants' muscles were not tensed. The cadaver limbs and the Hybrid III lower extremities with 45° ankle and soft joint-stop were extensively instrumented to determine response during the crash event. Brake pedal reaction forces were measured using a six-axis load cell and high speed film was used for kinematic analysis of the crashes. Four right foot positions were identified from previous simulation studies as those orientations most likely to induce injury. In each test, the left foot was positioned on a simulated footrest, acting as a control variable that produced repeatable results in all dummy tests. Each of the different right foot orientations resulted in different loads and motions of the right leg and foot.
Technical Paper

Lower Extremity and Brake Pedal Interaction in Frontal Collisions: Computer Simulation

1998-02-23
980364
An Articulated Total Body frontal crash simulation was created with the dummy's right foot placed on the brake pedal. This study examined how interaction of the driver's foot with the brake pedal influenced the behavior of the lower extremities in frontal collisions. Braking parameters considered in the study included foot position on the pedal, whether or not the occupant's muscles were tensed and if the brake pedal was rigid or was allowed to depress. Two basic foot positions were identified as most likely to induce injury of the lower limb. One represented a foot that was pivoted about the heel from the gas pedal to the brake pedal. The other position replicated a foot that was lifted from the gas pedal to the brake pedal, resulting in an initial gap between the heel and floor. Both positions resulted in different loads and behavior of the foot, indicating that driver pre-impact position is a contributing factor to one's injury risk.
X