Refine Your Search

Search Results

Viewing 1 to 12 of 12
Standard

REAL-TIME MODELING METHODS FOR GAS TURBINE ENGINE PERFORMANCE

1995-12-01
HISTORICAL
AIR4548
This SAE Aerospace Information Report (AIR) provides a review of real-time modeling methodologies for gas turbine engine performance. The application of real-time models and modeling methodologies are discussed. The modeling methodologies addressed in this AIR concentrate on the aerothermal portion of the gas turbine propulsion system. Characteristics of the models, the various algorithms used in them, and system integration issues are also reviewed. In addition, example cases of digital models in source code are provided for several methodologies.
Standard

Real-Time Modeling Methods for Gas Turbine Engine Performance

2022-01-20
CURRENT
AIR4548B
This SAE Aerospace Information Report (AIR) provides a review of real-time modeling methodologies for gas turbine engine performance. The application of real-time models and modeling methodologies are discussed. The modeling methodologies addressed in this AIR concentrate on the aerothermal portion of the gas turbine propulsion system. Characteristics of the models, the various algorithms used in them, and system integration issues are also reviewed. In addition, example cases of digital models in source code are provided for several methodologies.
Standard

Real-Time Modeling Methods for Gas Turbine Engine Performance

2013-04-02
HISTORICAL
AIR4548A
This SAE Aerospace Information Report (AIR) provides a review of real-time modeling methodologies for gas turbine engine performance. The application of real-time models and modeling methodologies are discussed. The modeling methodologies addressed in this AIR concentrate on the aerothermal portion of the gas turbine propulsion system. Characteristics of the models, the various algorithms used in them, and system integration issues are also reviewed. In addition, example cases of digital models in source code are provided for several methodologies.
Standard

Aircraft Propulsion System Performance Station Designation

2018-10-22
WIP
AS755G
This SAE Aerospace Standard (AS) provides a performance station designation system for aircraft propulsion systems and their derivatives. The station numbering conventions presented herein are for use in all communications concerning propulsion system performance such as computer programs, data reduction, design activities, and published documents. They are intended to facilitate calculations by the program user without unduly restricting the method of calculation used by the program supplier. The contents of this document were previously a subset of AS755E. Due to the growing complexity of station numbering schemes and an industry desire to expand nomenclature descriptions, a decision was made to separate the “station numbering” and “nomenclature” contents of AS755 into two separate documents. AS755 will continue to maintain standards for station numbering. SAE Aerospace Standard AS6502 will maintain standards for classical nomenclature moving forward.
Standard

Using Engine Test Data to Model Engine Performance

2012-11-01
HISTORICAL
AIR5509
This document defines the process steps involved in collecting and processing engine test data for use in understanding engine behavior. It describes the use of an aero-thermal cycle model for reduction and analysis of those data. The analysis process may include the calculation of modifiers to match the model to measured data, and prediction of engine performance based on that analysis
X