Refine Your Search




Search Results


Autonomous Vehicle Engineering: March 2018

Editorial Autonomy's data binge is more like a 5-course meal. Big Data, Big Challenges Cloud services and multiple partnerships are issues the mobility industry grapples with as data implications expand outside the vehicle. Reinventing the Automobile's Design The convergence of electric propulsion, Level 5 autonomy, and the advent of car-free urban zones, is driving new approaches to vehicle design and engineering. When Steering Isn't Steering Anymore High-level autonomy requires new thinking for even basic vehicle controls. Steer-by-wire technology eases some of the complexities automated driving presents-and offers desirable new possibilities. Autonomy and Electrification: A Perfect Match? Combining SAE Level 4/5 functionality and EV platforms brings chal-lenges-and opportunities for cost reduction and systems optimization. Who's Ahead in the Automated-Driving Race? The 2018 Navigant Research Leaderboard study brings interesting insights on the industry's progress.

SAE Vehicle Electrification: February 11, 2014

Inside the cell walls The high cost of lithium-ion batteries is a prison that has largely kept electric vehicles off the street; the keys to their release are more effective—but not more expensive—cell chemistries.

Voiture Minimum

Voted one of the top ten new design books, this lavishly illustrated book is a colorful account of Le Corbusier's love affair with the automobile, his vision of the ideal vehicle, and his tireless promotion of a design that industry never embraced. Le Corbusier, who famously called a house "a machine for living," was fascinated-even obsessed-by another kind of machine, the automobile. His writings were strewn with references to autos: "If houses were built industrially, mass-produced like chassis, an aesthetic would be formed with surprising precision," he wrote in Toward an Architecture (1923). In his "white phase" of the twenties and thirties, he insisted that his buildings be photographed with a modern automobile in the foreground. Le Corbusier moved beyond the theoretical in 1936, entering (with his cousin Pierre Jeanneret) an automobile design competition, submitting plans for "a minimalist vehicle for maximum functionality," the Voiture Minimum.

Birdflight as The Basis of Aviation

Scientists and aviation enthusiasts from around the world will find this one of the most important books ever published. It's the work of the German aviation pioneer and creative genius, Otto Lilienthal, whose observation, analysis, ingenuity and daring laid the foundation for the development of aviation. The "Flying Man" Lilienthal was the first man to launch himself into the air, fly, and land safely. First published in 1891, this new edition is an unabridged copy of the original complete with Lilienthal's own diagrams and formulae, and a preface written in 1911 by A.W. Isenthal, who translated the original into English after Lilienthal's death. After a comprehensive scientific study of how birds fly, Lilienthal recognized the superiority of curved wing surfaces. He then developed a theory of flight and designed and built a series of gliders. From 1891 to 1896 he made over 2,000 glides-bridging the gap between those who dreamed of flying and those who flew.

Automotive Antenna Design and Applications

Wireless communication technologies support a host of innovative devices in modern vehicles, including digital and satellite radio, GPS, cell phones, and short range communication gadgets. Such applications require the use of multiple antennas operating in different frequency ranges. Automotive Antenna Design and Applications thoroughly examines traditional and advanced automotive antennas, including the principles, designs, and techniques used to reduce antenna dimensions without significant degradation of communication quality. This book is based on cutting-edge data collected from numerous technical papers, patents, and patent applications. It presents an overview of many commercially available automotive antennas and covers features that have become standard in automotive applications.
Technical Paper

Application of Shape Memory Heat Engines to Improving Vehicle Fuel Economy

Shape memory materials undergo temperature-induced martensitic phase transformations that involve reversible dimensional changes. In performing these changes in shape, the shape-memory material is able to do work against external constraints, and this is the basis for shape-memory low-temperature heat engines. The transformation temperatures on heating and cooling are often not very different (little hysteresis) and are well defined and reproducible. Furthermore, these temperatures can be adjusted by varying the composition of the shape memory alloy. Internal combustion engines dissipate approximately two-thirds of the fuel energy as heat to the exhaust and coolant systems. A low-temperature heat engine could convert a fraction of this heat energy to useful work. This paper discusses the conceptual basis for the application of shape memory heat engines to internal combustion engine powered vehicles. Metallurgical and thermodynamic factors are discussed, as well as engine efficiency.
Technical Paper

Simulors, An Innovative Tool for Molds Development

Mold designers and foundrymen spend a lot of time in developing molds without knowing exactly the phenomena which take place inside. Simulor, which has been used in an industrial environment for two years, offers the solution to make foundrymen understand what happens during the filling of the mold and the solidification of the part. Based on navier-stokes and heat transfer equations, simulor provides speed distribution and metal front evolution in the cavity and thermal map in the mold and the part. Some examples with different metals (cast iron, aluminum alloy) cast with various processes (sand or die casting, low pressure or gravity casting) will be given. This new tool will given foundrymen the opportunity to test the mold before having it machined and will also allow reduction in development delays.
Technical Paper

Integration and Validation of Sheet Metal Forming Simulation Computer Programs Into the Design Process

In order to improve the design of drawn parts and to reduce the number of trial and error tests, Renault has undertaken the development and the validation of various finite element procedures and codes. This paper describes the function of each software and its level of integration into the design process. One of them is already an operational tool used be planners whilst the others are still in the validation phase. Selected examples show typical applications of the computer programs on automotive parts.
Technical Paper

A Study on the Performance of Guideway Bus Steering Control System

In this paper a computer simulation study on the effects of steering parameters on lateral dynamics of the guideway bus to contribute to a development practice of designing optimum steering control system are dealt with. A stability limit of vehicle lateral motion is analyzed and an emphasis is laid on the effects of moment of inertia of a conventional steering wheel and lateral elasticity of the guide rail which have proven to reduce the critical vehicle speed. It is pointed out conclusively that a normal bus equipped with additional simple guidance equipments can be guided smoothly on a simple guideway at adequately high vehicle speed.
Technical Paper

Integration of Reliability, Maintainability and Quality Parameters in Design

Synthesizing different customer and functional requirements into an acceptable design configuration within a given space constraints is a challenging task for design engineers. The principles for designing efficiency, noise levels, maneuverability, safety, durability, etc. into the product are well understood. However, designing for reliability, maintainability and quality turns out to be a long-drawn laborious process due to unavailability of simplified design procedures. The author in this paper develops the understanding of reliability, maintainability and quality design principles and methods for products, with specific reference to vehicle designs.
Technical Paper

Integration of SEA Tire Model with Vehicle Model

Statistical energy analysis (SEA) has recently emerged as an effective tool for design assessment in the automotive industry. Automotive OEM companies develop vehicle models to aid design of body and chassis systems. The tire and wheel suppliers develop and supply component models to OEM companies in the engineering stage. In the model development process, some information on the vehicle side or component side is necessary for model development and correlation. A suitable termination representation of the vehicle characteristics on the tire/wheel model is required. This termination should account for the dissipation of energy on vehicle body and chassis side, otherwise the component model will overestimate the vibration responses and energy levels. On the vehicle model side, a representative simplified tire/wheel model may be sufficient for full vehicle road noise simulation.
Technical Paper

Repeatability of Impedance and Ripple Tests for Automotive Pumps

Pumps are usually tested for performance and efficiency as well as other pump characteristics. With the increased awareness of Noise, Vibration and Harshness (NVH) in the automotive industry, new standardized tests have evolved for testing pumps. Two major tests are the impedance and ripple tests. Information collected on these signatures of pumps is vital for the success of any Fluid Born Noise (FBN) analysis of these important components and the system in which they function. The purpose of this paper is to study the repeatability and reproducibility of such tests for the same pump. Production variability will be found when pumps of the same ‘category’ or part number are tested. The information presented here is important for the generalization of these tests and establishing them as a part of the research, development and design process. A set of pumps commonly used in the vehicle is put to the test.
Technical Paper

Application of a Lean Cellular Design Decomposition to Automotive Component Manufacturing System Design

A design framework based on the principles of lean manufacturing and axiomatic design was used as a guideline for designing an automotive component manufacturing system. A brief overview of this design decomposition is given to review its structure and usefulness. Examples are examined to demonstrate how this design framework was applied to the design of a gear manufacturing system. These examples demonstrate the impact that low-level design decisions can have on high-level system objectives and the need for a systems-thinking approach in manufacturing system design. Results are presented to show the estimated performance improvements resulting from the new system design.
Technical Paper

The Design and Testing of Buckling Monocoque Seating Structures for Aircraft

The introduction of FAR23.562 to the Federal Aviation Regulations has necessitated the design and testing of aircraft seats with energy absorbing characteristics to minimize pelvic loads experienced when the seat environment is subject to specified acceleration pulses. Aircraft seat designers have applied various techniques to facilitate this energy absorption. Generally these techniques come at the expense of ease of manufacture and durability. This paper describes the development and testing of seating structures fabricated in a simple and easily reproducible form from sheet aluminium. The design employs both compressive buckling and plastic tensile deformation of the aluminium panels in the seat pan as the means of energy absorption. As the post buckled deflections required to provide sufficient seat stroke are large, the design process does not lend itself to simple theoretical analysis.
Technical Paper

The Production System Design and Deployment Framework

This session keynote paper presents a framework for designing and deploying production systems. The framework enables the communication and determination of objectives and design solutions from the highest level to the lowest level of a manufacturing enterprise. The design methodology ensures that the physical implementation, called Design Parameters (DPs), meets the objectives or Functional Requirements (FRs) of the production system design. This paper presents a revolutionary approach to determine the objectives and the implementation of a “lean” production system design for a manufacturing business as guided by the design axiom of independence.
Technical Paper

Engineering Metrics for Disturbing Sound Elements of Automotive Exhaust Noise

This paper describes a method to determine an objective measure of disturbing sounds of automotive exhaust noise (e.g. booming noise, whistle, flow noise,…). First, a disturbing sound catalogue is established. Then the approach used to make the different disturbing sounds measurable is presented. By making the perception of the disturbing sounds objective, it becomes easy to determine when they appear and to what extent. Finally, the contribution of this research in the framework of the global integration of sound quality in the design process of exhaust systems will be discussed.
Technical Paper

Shoebox Converter Design for Thinwall Ceramic Substrates

Shoebox catalytic converter design to securely mount thinwall substrates with uniform mounting mat Gap Bulk Density (GBD) around the substrate is developed and validated. Computational Fluid Dynamic (CFD) analysis, using heat transfer predictions with and without chemical reaction, allows to carefully select the mounting mat material for the targeted shell skin temperature. CFD analysis enables to design the converter inlet and outlet cones to obtain uniform exhaust gas flow to achieve maximum converter performance and reduce mat erosion. Finite Element Analysis (FEA) is used to design and optimize manufacturing tool geometry and control process. FEA gives insight to simulate the canning process using displacement control to identify and optimize the closing speed and load to achieve uniform mat Gap Bulk Density between the shell and the substrate.
Technical Paper

The Application of Ceramic and Catalytic Coatings to Reduce the Unburned Hydrocarbon Emissions from a Homogeneous Charge Compression Ignition Engine

An experimental and theoretical study of the effect of thermal barriers and catalytic coatings in a Homogeneous Charge Compression Ignition (HCCI) engine has been conducted. The main intent of the study was to investigate if a thermal barrier or catalytic coating of the wall would support the oxidation of the near-wall unburned hydrocarbons. In addition, the effect of these coatings on thermal efficiency due to changed heat transfer characteristics was investigated. The experimental setup was based on a partially coated combustion chamber. The upper part of the cylinder liner, the piston top including the top land, the valves and the cylinder head were all coated. As a thermal barrier, a coating based on plasma-sprayed Al2O3 was used. The catalytic coating was based on plasma-sprayed ZrO2 doped with Platinum. The two coatings tested were of varying thickness' of 0.15, 0.25 and 0.6 mm. The compression ratio was set to 16.75:1.
Technical Paper

Measurement of Instantaneous Heat Flux Flowing Into Metallic and Ceramic Combustion Chamber Walls

Accurate measurements of combustion gas temperature and the coefficient of heat transfer between the gas and the combustion chamber wall of internal combustion engine in cyclic operations are difficult at present. Hence the only method available for determination of states of thermal load and heat loss to the combustion chamber wall in a cycle is to measure the instantaneous temperature on the combustion chamber wall surface accurately and precisely using proper thin-film thermocouples, then to calculate the instantanenous heat flux flowing into the wall surface by means of numerical analysis. However, it is necessary to pay adequate attention to the effects of thermophysical properties of the thermocouple materials on the measured values, since any thermocouple consists of several kinds of materials which are different from those of portions to be measured.