Refine Your Search

Topic

Author

Affiliation

Search Results

Standard

Test Method for Catalytic Carbon Brake Disk Oxidation

2013-12-04
WIP
AS6289
The scope of the test method is to provide stakeholders including fluid manufacturers, brake manufacturers, aircraft constructors, aircraft operators and airworthiness authorities with a relative assessment of the effect of deicing chemicals on carbon oxidation. This test is designed to assess the relative effects of runway deicing chemicals by measuring mass change of contaminated and bare carbon samples tested under the same conditions.
Standard

Missionized Wear Testing

2019-01-02
WIP
ARP6979
Publicize Aircraft Recommended Practice for Missionized Wear Testing on Wright Patterson’s Landing Gear Test Facility’s 168i dynamometer.
Standard

Landing Gear Based Weight and Balance Systems

2019-04-18
WIP
AIR6941
This document outlines historical systems which have used the landing gear as a sensor or installation point for full aircraft weight and balance systems. A number of systems have been developed, installed, certified, and placed in service but few systems remain in regular use. The document will capture the history of these systems, reasons (where known) for their withdrawal from service, and lessons learned.
Standard

Electric Drivetrain Fluids (EDF)

2019-04-24
WIP
J3200
This SAE Information Report is to assist those concerned with lubricants used in drivetrain components powered by electric powerplants. The information contained herein will be helpful in understanding the terms related to the properties of a lubricant used in electric drivetrains.
Standard

Wheels - Radial Impact Test Procedure - Road Vehicles

2019-05-22
WIP
J3203
The SAE recommended practice provides a uniform laboratory test procedure for evaluating radial(road hazard) impact collision resistance of all wheels intended for use on passenger vehicles and light trucks.
Video

SAE Demo Day in Tampa - City and State Perspectives

2018-08-14
Dramatic changes in transportation are coming. Cities and states looking to be at the forefront and reap the benefits, need an engaged and informed citizenry. Hear how the SAE Demo Day in Tampa supported Florida's AV initiatives and can benefit states nationwide.
Video

SAE Demo Day in Tampa - Highlights

2018-08-14
In May 2018, SAE International in partnership with THEA and leading AV technology companies gave citizens in Tampa a chance to test ride the future. The event included a pre- and post-ride survey, a ride in an automated vehicle, interactive displays and engagement with industry experts. See highlights of the event and feedback from participants.
Technical Paper

A Driving Simulator Using Microprocessors

1988-03-01
871156
An inexpensive driving simulation system with sufficient fidelity has been developed. The system produces motion cues of four degrees of freedom, visual and auditory cues, and control feel on the steering wheel. This paper describes the features of this newly developed system and gives examples that demonstrate its effectiveness. The motion cues provided in this system are yaw, heave, and lateral and fore/aft accelerations. The lateral and fore/aft accelerations are simulated by tilting the simulator compartment. A computer-processed road image is given through a CRT monitor. The restoring torque of the steering wheel is produced by an electrical servosystem via a coil spring. Cruising sound is given in order to improve speed perception. Since the system uses digital computers, the vehicle characteristics are altered easily by merely rewriting the software. This enables us to simulate special vehicle dynamics such as front & rear wheel steering.
Technical Paper

A Study on the Performance of Guideway Bus Steering Control System

1988-03-01
871231
In this paper a computer simulation study on the effects of steering parameters on lateral dynamics of the guideway bus to contribute to a development practice of designing optimum steering control system are dealt with. A stability limit of vehicle lateral motion is analyzed and an emphasis is laid on the effects of moment of inertia of a conventional steering wheel and lateral elasticity of the guide rail which have proven to reduce the critical vehicle speed. It is pointed out conclusively that a normal bus equipped with additional simple guidance equipments can be guided smoothly on a simple guideway at adequately high vehicle speed.
Standard

Definition and Measurement of Beam Axle Efficiency

2019-12-04
WIP
J3218
This SAE Recommended Practice covers beam axles used in passenger car and light-duty truck applications. Beam Axles utilize differentials which are of the open, limited slip, locking or spool types, although other configurations are possible
Technical Paper

Tire/Road Interface Airborne Noise Characteristics Generation

1999-05-17
1999-01-1731
In recent years there has been much interest in problems involving the noise prediction and reduction inside and outside the vehicle. Tire/road exterior noise has been considered to be the major vehicle exterior noise source. However, this paper describes an investigation into the characteristics of the air pumping noise mechanism in terms of source locations and directionality. Some rubber tire/road air pumping noise measurements are presented, whereas some predicted results are computed based on the boundary element method (BEM) to display some parameters which are found to be difficult to be obtained experimentally.
Technical Paper

Using Simulation to Design a Lean Material Delivery System in an Automotive Body Shop

1999-05-10
1999-01-1643
A simulation study was undertaken to help design a material delivery system to support lean manufacturing in an automotive body shop. Since this was a greenfield facility, simulation analysis was employed in the very early design phase of the system to determine and quantify the limiting parameters of the proposed lean material delivery system. The simulation analysis evolved with the changes in the design parameters and assumptions of the facility. The updated information from the simulation model helped the designers to evaluate alternate concepts and understand some parameters better such as, traffic congestion, manpower, and storage area requirement.
Technical Paper

Numerical Investigation of Vehicles Aerodynamics through Driving Tunnels

2000-04-02
2000-01-1579
Due to the rapid development in many parts of Egypt, construction of a wide road network is maintaining a rapid pace. But, those roads are affected by the overcrowded big cities. Thus, there is a growing need for driving tunnels to reduce the traffic problems and facilitate transportation. This issue is highly related to economic (fuel consumption) and environmental (pollution and noise) matters. Up to our knowledge, this paper represents the first numerical study to concern driving tunnels in the Middle East. Actual domestic tunnels and vehicles are computationally simulated. Investigations concentrate on flow behavior, especially overall drag coefficient and wake structure behind vehicles. Results show that many parameters, such as tunnel height, and vehicle height and speed, affect the aerodynamic characteristics through driving tunnels.
Technical Paper

Analysis of Vehicle Response Data Measured During Severe Maneuvers

2000-05-15
2000-01-1644
During the past few years, the National Highway Traffic Safety Administration's (NHTSA) Vehicle Research and Test Center has generated a plethora of reliable vehicle test data during their efforts to study vehicle rollover propensity. This paper provides further analyses of a small selection of some of the data. The analyses provided here derive in part from the previous work, trying to answer some of the questions spawned by earlier analyses. The purpose of this paper is to introduce several new concepts to the study of vehicle roll stability and provide case studies using the results available from the NHTSA testing. Results from several severe maneuvers are studied in detail to gain understanding of vehicle response in these cases.
Technical Paper

Fundamental Physics Behind New Suspension Concept for Automobiles

2000-05-01
2000-01-1647
The Transverse Leaf suspension with Superior Roll Axis is a new suspension concept for automobiles. It enables the load transfer during a turn to be more evenly redistributed between the two wheels on the same axle thus optimizing its tires lateral force capabilities. The TLSRA concept is made up of a single transverse leaf spring linking the middle of the sprung mass to the outer end of 2 transverse suspension arms per axle. Those transverse arms are mounted close to the middle of the sprung mass with their attachment points located above the mass centroïd. Each wheel assembly is mounted directly onto the free end of its respective suspension arm. Because body roll is now counteracting vertical load transfer during transient and permanent operating conditions, this suspension enables designers to keep spring stiffness low without compromising road handling.
Technical Paper

Development of Active-Traction Control System

2000-05-01
2000-01-1636
Active-TRAC (A-TRAC) is the system for off-road 4WD vehicles. This system consists of independent four wheel brake control system and engine torque control system. This system applies the brake to any spinning wheel, and sends torque to the other wheels with grip. Therefore, the vehicle gets strong LSD(Limited Slip Differential) effect, and it has the same traction performance as a center and rear differential locked vehicle. Because the vehicle with A-TRAC does not have a differential locking mechanism, it no longer has the phenomenon of tight corner braking, and it frees a driver from operating the differential locking system. Therefore anyone can easily enjoy off-road driving with A-TRAC.
Technical Paper

Using μ Feedforward for Vehicle Stability Enhancement

2000-05-01
2000-01-1634
Vehicle stability augmentation has been refined over many years, and currently there are commercial systems that control right/left braking and throttle to create vehicles that remain controlled when road conditions are very poor. These systems typically use yaw rate and lateral acceleration in their control philosophy. The tire/road friction coefficient, μ, has a significant role in vehicle longitudinal and lateral control, and there has been associated efforts to measure or estimate the road surface condition to provide additional information for the stability augmentation system. In this paper, a differential braking control strategy using yaw rate feedback, coupled with μ feedforward is introduced for a vehicle cornering on different μ roads. A nonlinear 4-wheel car model is developed. A desired yaw rate is calculated from the reference model based on the driver steering input.
Technical Paper

A New Method for Determining Tire Traction on Ice

2000-05-01
2000-01-1640
The development of tires traction models is very important for tire mechanics and automobile dynamics. Based on principle of thermal balance and theory of frictional melting, a new method for determining tire traction on an iced highway was presented. It was shown that the computed results could compare with the available test results. The advantages of a car with CTI-DS travelling on ice or compact snow were demonstrated in theory and in experiment. It was recommended that an automobile be operating at lower inflation pressures to increase tire traction force on the above highways.
Technical Paper

An Automatic Vehicle Controller for Stability and Handling Tests

2000-05-01
2000-01-1627
An automatic vehicle controller (AVC) which was specified, designed, fabricated, installed and used on a variety of vehicles, including automobiles, light trucks, and sport utility vehicles is described. The AVC controls the vehicle's steering, and input waveforms of virtually any type or complexity can be specified from computer files containing steering wheel angle commands as functions of time. Also, algorithms which use motion sensor feedback in the steering control logic can be programmed. Throttle and brake controls can also be provided.
X