Refine Your Search

Topic

Search Results

Standard

CUSHION TOW HITCHES TEST

1992-08-18
HISTORICAL
AIR1353A
The main purpose of this test was to determine the application advantages of cushion tow hitches in comparison to the commonly used rigid tow hitch type fitted on heavy aircraft towing tractors. As diverse opinions emerged about its suitability since the introduction on the market of this new tow hitch type, it was intended to physically measure and evaluate the damping capability of this cushioned tow link when applied in practice.
Standard

CUSHION TOW HITCHES TEST

1974-05-01
HISTORICAL
AIR1353
The main purpose of this test was to determine the application advantages of cushion tow hitches in comparison to the commonly used rigid tow hitch type fitted on heavy aircraft towing tractors. As diverse opinions emerged about its suitability since the introduction on the market of this new tow hitch type, it was intended to physically measure and evaluate the damping capability of this cushioned tow link when applied in practice.
Standard

Cushion Tow Hitches Test

2006-02-09
HISTORICAL
AIR1353B
The main purpose of this test was to determine the application advantages of cushion tow hitches in comparison to the commonly used rigid tow hitch type fitted on heavy aircraft towing tractors. As diverse opinions emerged about its suitability since the introduction on the market of this new tow hitch type, it was intended to physically measure and evaluate the damping capability of this cushioned tow link when applied in practice.
Standard

Cushion Tow Hitches Test

2012-12-05
CURRENT
AIR1353C
The main purpose of this test was to determine the application advantages of cushion tow hitches in comparison to the commonly used rigid tow hitch type fitted on heavy aircraft towing tractors. As diverse opinions emerged about its suitability since the introduction on the market of this new tow hitch type, it was intended to physically measure and evaluate the damping capability of this cushioned tow link when applied in practice.
Standard

SOLID-STATE FREQUENCY CONVERTER 400 HERTZ, 3-PHASE OUTPUT

1989-09-01
HISTORICAL
ARP1940
This specification covers the requirements for solid-state frequency converters with 480 [or 380] V 3-phase, 60 [or 50] Hz input and 115/200 V, 3-phase, 400 Hz output capable of powering aircraft type loads requiring MIL-STD-704D quality power. The frequency converter shall be a self-contained unit suitable for the environment of intended use. Typical applications include dedicated use at passenger loading bridges (mounted under the bridge in telescoping bridge applications or fixed installation at base of stationary type loading bridges) with weatherproof enclosures or hangar/lab use where indoor fixed or portable units can be used.
Standard

Aural Protector, Sound

1999-05-01
HISTORICAL
AS23899
This specification covers the design and performance requirements for one type of sound aural protector.
Standard

Aural Protector, Sound

2012-01-24
CURRENT
AS23899A
This specification covers the design and performance requirements for one type of sound aural protector.
Standard

Method of Testing Pre-Conditioned Air Equipment

2021-04-08
CURRENT
ARP5374B
This SAE Aerospace Recommended Practice (ARP) applies to Point-Of-Use, Central and Mobile Pre-Conditioned Air Equipment. It does not apply to aircraft mounted equipment.
Standard

Method of Testing Pre-Conditioned Air Equipment

2008-04-15
HISTORICAL
ARP5374A
This SAE Aerospace Recommended Practice (ARP) applies to Point-Of-Use, Central and Mobile Pre-Conditioned Air Equipment. It does not apply to aircraft mounted equipment.
Standard

Method of Testing Pre-Conditioned Air Equipment

2001-12-07
HISTORICAL
ARP5374
This SAE Aerospace Recommended Practice (ARP) applies to Point-Of-Use, Central and Mobile Pre-Conditioned Air Equipment. It does not apply to aircraft mounted equipment.
Standard

Aircraft Markings for Ground Support Equipment Alignment

2020-04-24
CURRENT
AS6896
The purpose of this document is to provide a standard for aircraft fuselage markings located at the doors used for ground servicing operations. These markings can be used by all GSE that will dock at the aircraft. These markings may be used for one or several phases of the GSE positioning relative to the aircraft process: GSE alignment during approach, GSE final docking, and GSE auto leveling. It is not the purpose of this standard to describe the different technologies, cameras, or other equipment that can be mounted on GSE to utilize these markings. The aircraft that may use these markings will have a fuselage diameter of 3 m or more.
Standard

Nose Gear Towbarless Tow Vehicle Basic Test Requirements

2022-09-30
CURRENT
ARP5283B
The purpose of this specification is to provide airplane operators and tow vehicle manufacturers with: a General design and operating requirements pertinent to test and evaluation of towbarless tow vehicles. Specific design requirements are provided in ARP4852 and ARP4853. b Test and evaluation requirements. The results of these test evaluations will determine if the loads induced by the tow vehicle will exceed the design loads of the nose gear, or are within the aircraft manufacturer’s limits so that they do not affect the certified safe limit of the nose gear. The results of these test evaluations will also determine if a stability problem may occur during pushback and/or maintenance towing operations with the tested airplane/tow vehicle combination. This document specifies general test requirements and a test evaluation procedure for towbarless tow vehicles (TLTV) intended for pushback and maintenance towing only.
Standard

Nose Gear Towbarless Tow Vehicle Basic Test Requirements

2005-02-10
HISTORICAL
ARP5283
The purpose of this specification is to provide airplane operators and tow vehicle manufacturers with: a General design and operating requirements pertinent to test and evaluation of towbarless tow vehicles. Specific design requirements are provided in ARP4852A and ARP4853A. b Test and evaluation requirements. The results of these test evaluations will determine if the loads induced by the tow vehicle will exceed the design loads of the nose gear, reduce the certified safe life limit of the nose gear, or induce a stability problem during pushback and/or maintenance towing operations. This document specifies general test requirements and a test evaluation procedure for towbarless tow vehicles (TLTV) intended for pushback and maintenance towing only. It is not meant for dispatch (operational) towing (see definitions in Section 3). Dispatch towing imposes greater loads on nose gears and structure due to additional passenger, cargo, and fuel loads.
Standard

Nose Gear Towbarless Tow Vehicle Basic Test Requirements

2012-09-24
HISTORICAL
ARP5283A
The purpose of this specification is to provide airplane operators and tow vehicle manufacturers with: a General design and operating requirements pertinent to test and evaluation of towbarless tow vehicles. Specific design requirements are provided in ARP4852 and ARP4853. b Test and evaluation requirements. The results of these test evaluations will determine if the loads induced by the tow vehicle will exceed the design loads of the nose gear, or are within the aircraft manufacturer’s limits so that they do not affect the certified safe limit of the nose gear. The results of these test evaluations will also determine if a stability problem may occur during pushback and/or maintenance towing operations with the tested airplane/tow vehicle combination. This document specifies general test requirements and a test evaluation procedure for towbarless tow vehicles (TLTV) intended for pushback and maintenance towing only.
Standard

MAINTENANCE OF BATTERIES AND BATTERY CHARGING AND SERVICING FACILITIES

1992-06-10
HISTORICAL
AIR1898
This SAE Aerospace Information Report (AIR) covers, and is restricted to, hands-on servicing/maintenance of industrial lead acid batteries used solely for motive power and exclusively for ground support equipment (GSE). It does not address or pertain to automotive-type SLI (starting-lighting-ignition) batteries or any other types of batteries (such as nickel-cadmium, zinc, or lithium batteries) which may be on-board airport GSE for either motive power or auxiliary uses. Similarly, the battery servicing and charging facilities described herein are those intended exclusively for industrial lead acid batteries.
X