Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

On-Site Checks of the Particle Number Measurement Systems with Polydisperse Aerosol

2012-04-16
2012-01-0873
Since 2011 a particle number (PN) limit was introduced in the European light-duty diesel vehicles legislation. The PN measurement systems consist of i) a hot diluter and an evaporation tube at 300-400°C for the removal of the volatiles (Volatile Particle Remover, VPR) and ii) a particle number counter (PNC) with a 50% cut-point (cut-off) at 23 nm. The PN measurement systems are calibrated and validated annually with monodisperse aerosol: The VPR for the particle concentration reduction factor (PCRF) and the PNC for the linearity and the cut-off size. However, there are concerns that the PN measurement systems can drift significantly over this period of time, raising concerns regarding the validity of the previous measurements, especially if the yearly validation fails.
Journal Article

Development of Measurement Methodology for Sub 23 nm Particle Number (PN) Measurements

2020-09-15
2020-01-2211
A proposal for sub-23 nm Solid Particle Number (SPN) measurement method was developed by the Particle Measurement Programme (PMP) group, based on the current SPN measurement method. In the proposal, a Particle Number Counter (PNC) having (65 ± 15)% counting efficiency at 10 nm and >90% at 15 nm (PNC10) replaces the current regulation PNC efficiency of 50±12% at 23 nm and >90% at 41 nm. Additionally, a catalytically active evaporation tube (CS) is required for sub-23 nm measurement method instead of the non-reactive evaporation tube (ET) of the current regulation. Here experimental work carried out at the JRC to address the issues of sub-23 nm SPN-measurement method is presented. The PNC10 was shown to be less dependent on the particle material than the PNC23, thus soot-like particles are still allowed for PNC-calibration. The high charging probability of soot-like particles was shown to have a low effect on PNC calibration uncertainties.
X