Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

Effects of Piston Wetting on Size and Mass of Particulate Matter Emissions in a DISI Engine

2002-03-04
2002-01-1140
We have examined the influence of piston wetting on the size distribution and mass of particulate matter (PM) emissions in a SI engine using several different fuels. Piston wetting was isolated as a source of PM emissions by injecting known amounts of liquid fuel onto the piston top using an injector probe. The engine was run predominantly on propane with approximately 10% of the fuel injected as liquid onto the piston. The liquid fuels were chosen to examine the effects of fuel volatility and molecular structure on the PM emissions. A nephelometer was used to characterize the PM emissions. Mass measurements from the nephelometer were compared with gravimetric filter measurements, and particulate size measurements were compared with scanning electron microscope (SEM) photos of particulates captured on filters. The engine was run at 1500 rpm at the Ford world-wide mapping point with an overall equivalence ratio of 0.9.
Technical Paper

An On-Board Distillation System to Reduce Cold-Start Hydrocarbon Emissions

2003-10-27
2003-01-3239
An On-Board Distillation System (OBDS) was developed to extract, from gasoline, a highly volatile crank fuel that allows the reduction of startup fuel enrichment and significant spark retard during cold starts and warm-up. This OBDS was installed on a 2001 Lincoln Navigator to explore the emissions reductions possible on a large vehicle with a large-displacement engine. The fuel and spark calibration of the PCM were modified to exploit the benefits of the OBDS startup fuel. Three series of tests were performed: (1) measurement of the OBDS fuel composition and distillation curve per ASTM D86, (2) measurement of real-time cold start (20 °C) tailpipe hydrocarbon emissions for the first 20 seconds of engine operation, and (3) FTP drive cycles at 20 °C with engine-out and tailpipe emissions of gas-phase species measured each second. Baseline tests were performed using stock PCM calibrations and certification gasoline.
Technical Paper

Emissions and Fuel Economy of a 1998 Toyota with a Direct Injection Spark Ignition Engine

1999-05-03
1999-01-1527
A 1998 Toyota Corona passenger car with a direct injection spark ignition (DISI) engine was tested via a variety of driving cycles using California Phase 2 reformulated gasoline. A comparable PFI vehicle was also evaluated. The standard driving cycles examined were the Federal Test Procedure (FTP), Highway Fuel Economy Test, US06, simulated SC03, Japanese 10-15, New York City Cycle, and European ECE+EDU. Engine-out and tailpipe emissions of gas phase species were measured each second. Hydrocarbon speciations were performed for each phase of the FTP for both the engine-out and tailpipe emissions. Tailpipe particulate mass emissions were also measured. The results are analyzed to identify the emissions challenges facing the DISI engine and the factors that contribute to the particulates, NOx, and hydrocarbon emissions problems of the DISI engine.
Technical Paper

Effect of Fuel Parameters on Emissions from a Direct Injection Spark Ignition Engine During Constant Speed, Variable Load Tests

2000-06-19
2000-01-1909
A 1998 Toyota Corona passenger car with a direct injection spark ignition (DISI) engine was tested at constant engine speed (2000 rpm) over a range of loads. Engine-out and tailpipe emissions of gas phase species were measured each second. This allowed examination of the engine-out emissions for late and early injection. Seven fuels were used for these tests: five blended fuels and two pure hydrocarbon fuels. These seven fuels can be divided into groups for examination of the effects of volatility, MTBE, and structure (an aromatic versus an i-alkane). Correlations between the fuel properties and their effects on emissions are presented. Use of steady state tests rather than driving cycles to examine fuel effects on emissions eliminates the complications resulting from accelerations, decelerations, and changes of injection timing but care had to be taken to account for the periodic regenerations of the lean NOx trap/catalyst.
Technical Paper

Effect of Fuel Parameters on Speciated Hydrocarbon Emissions from a Direct Injection Spark Ignition Engine

2000-06-19
2000-01-1908
A 1998 Toyota Corona passenger car with a direct injection spark ignition (DISI) engine was tested over the Federal Test Procedure (FTP) driving cycle. Speciated engine-out hydrocarbon emissions were measured. Seven fuels were used for these tests: five blended fuels and two pure hydrocarbon fuels. One of the blended fuels was CARB Phase 2 reformulated gasoline which was used as the reference fuel. The remaining four blended fuels were made from refinery components to meet specified distillation profiles. The pure hydrocarbon fuels were iso-octane and toluene - an alkane and an aromatic with essentially identical boiling points. The five blended fuels can be grouped to examine the effects of fuel volatility and MTBE. Additionally, correlations were sought between the fuel properties and the Specific Reactivity, the exhaust “toxics”, and the pass-through of unburned fuel species.
Technical Paper

The Effects of In-Cylinder Flow Fields and Injection Timing on Time-Resolved Hydrocarbon Emissions in a 4-Valve, DISI Engine

2000-06-19
2000-01-1905
Direct injection spark-ignition (DISI) engines have been shown to have much higher engine-out hydrocarbon emissions (HC) than port fuel injected (PFI) engines. A major contribution to the increase in HC emissions is from the in-cylinder surface wetting that occurs as the fuel is injected. A previous study using an optical access engine and a fuel concentration probe demonstrated that the in-cylinder flow field and injection timing have a significant effect on the equivalence ratio at the spark plug. This study continues that work, by using a fast spectroscopic HC emission measurement device (Fast-Spec) to study time-resolved HC emissions from a 4-valve, centrally injected, single cylinder DISI engine. Three flow fields are studied: tumble, reverse tumble and stock. The tumble and reverse tumble flow fields are achieved using shrouded valves. Both early and late start of injection (SOI) timings are investigated.
Technical Paper

Effects of Fuel Volatility, Load, and Speed on HC Emissions Due to Piston Wetting

2001-05-07
2001-01-2024
Piston wetting can be isolated from the other sources of HC emissions from DISI engines by operating the engine predominantly on a gaseous fuel and using an injector probe to impact a small amount of liquid fuel on the piston top. This results in a marked increase in HC emissions. In a previous study, we used a variety of pure liquid hydrocarbon fuels to examine the influence of fuel volatility and structure on the HC emissions due to piston wetting. It was shown that the HC emissions correspond to the Leidenfrost effect: fuels with very low boiling points yield high HCs and those with a boiling point near or above the piston temperature produce much lower HCs. All of these prior tests of fuel effects were performed at a single operating condition: the Ford World Wide Mapping Point (WWMP). In the present study, the effects of load and engine speed are examined.
Technical Paper

The Effects of Fuel Volatility and Structure on HC Emissions from Piston Wetting in DISI Engines

2001-03-05
2001-01-1205
Piston wetting can be isolated from the other sources of HC emissions from DISI engines by operating the engine predominantly on a gaseous fuel and using an injector probe to impact a small amount of liquid fuel on the piston top. This results in a marked increase in HC emissions. All of our prior tests with the injector probe used California Phase 2 reformulated gasoline as the liquid fuel. In the present study, a variety of pure liquid hydrocarbon fuels are used to examine the influence of fuel volatility and structure. Additionally, the exhaust hydrocarbons are speciated to differentiate between the emissions resulting from the gaseous fuel and those resulting from the liquid fuel. It is shown that the HC emissions correspond to the Leidenfrost effect: fuels with very low boiling points yield high HCs and those with a boiling point near or above the piston temperature produce much lower HCs.
Technical Paper

Liquid Film Evaporation Off the Piston of a Direct Injection Gasoline Engine

2001-03-05
2001-01-1204
An optical access engine was used to image the liquid film evaporation off the piston of a simulated direct injected gasoline engine. A directional injector probe was used to inject liquid fuel (gasoline, i-octane and n-pentane) directly onto the piston of an engine primarily fueled on propane. The engine was run at idle conditions (750 RPM and closed throttle) and at the Ford World Wide Mapping Point (1500 RPM and 262 kPa BMEP). Mie scattering images show the liquid exiting the injector probe as a stream and directly impacting the piston top. Schlieren imaging was used to show the fuel vaporizing off the piston top late in the expansion stroke and during the exhaust stroke. Previous emissions tests showed that the presence of liquid fuel on in-cylinder surfaces increases engine-out hydrocarbon emissions.
Technical Paper

Development and Application of an Improved Ring Pack Model for Hydrocarbon Emissions Studies

1996-10-01
961966
Because only the unburned gases in the crevices can contribute to hydrocarbon emissions, a model was developed that can be used to determine the temporal and spatial histories of both burned gas and unburned gas flow into and out of the piston-liner crevices. The burned fraction in the top-land is primarily a function of engine design. Burned gases continue to get packed into the inter-ring volume until well after the end of combustion and the unburned fuel returned to the chamber from this source depends upon both the position of the top ring end gap relative to the spark plug and of the relative positions of the end gaps of the compression rings with respect to each other. Because the rings rotate, and because the fuel that returns to the chamber from the inter-ring crevice dominates the sources between BDC and IVO when conditions are unfavorable to in-cylinder oxidation, these represent two sources of variability in the HC emissions.
X