Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

The Texas Diesel Fuels Project, Part 2: Comparisons of Fuel Consumption and Emissions for a Fuel/Water Emulsion and Conventional Diesel Fuels

2004-03-08
2004-01-0087
The Texas Department of Transportation began using an emulsified diesel fuel in 2002. They initiated a simultaneous study of the effectiveness of this fuel in comparison to 2D on-road diesel fuel and 2D off-road diesel. The study included comparisons of fuel economy and emissions for the emulsion, Lubrizol PuriNOx®, relative to conventional diesel fuels. Two engines and eight trucks, four single-axle dump trucks, and four tandem-axle dump trucks were tested. The equipment tested included both older mechanically-controlled diesels and newer electronically-controlled diesels. The two engines were tested over two different cycles that were developed specifically for this project. The dump trucks were tested using the “route” technique over one or the other of two chassis dynamometer cycles that were developed for this project In addition to fuel efficiency, emissions of NOx, PM, CO, and HCs were measured. Additionally, second-by-second results were obtained for NOx and HCs.
Technical Paper

The Texas Diesel Fuels Project, Part 3: Cost-Effectiveness Analyses for an Emulsified Diesel Fuel for Highway Construction Equipment Fleets

2004-03-08
2004-01-0086
The Texas Department of Transportation (TxDOT) began using an emulsified diesel fuel as an emissions control measure in July 2002. They initiated a study of the effectiveness of this fuel in comparison to conventional diesel fuel for TxDOT's Houston District operations and included the fleet operated by the Associated General Contractors (AGC) in the Houston area. Cost-effectiveness analyses, including the incremental cost per ton of NOx removed, were performed. NOx removal was the focus of this study because Houston is an ozone nonattainment area, and NOx is believed to be the limiting factor in ozone formation in the Houston area. The cost factors accounted for in the cost-effectiveness analyses included the incremental cost of the fuel (including an available rebate from the State of Texas), the cost of refueling more often, implementation costs, productivity costs, maintenance costs, and various costs associated with the tendency of the emulsion to separate.
Technical Paper

Effects of In-cylinder Flow on Fuel Concentration at the Spark Plug, Engine Performance and Emissions in a DISI Engine

2002-03-04
2002-01-0831
A fiber optic instrumented spark plug was used to make time-resolved measurements of the fuel vapor concentration history near the spark gap in a four-valve DISI engine. Four different bulk flow were investigated. Several early and late injection timings were examined. The fuel concentration at the spark gap was correlated with IMEP. Emissions of CO, HCs, and NOx were related to the type of bulk flow. For both early and late injection the CoVs of fuel concentration were generally lowest for the weakest bulk flow which resulted in a stable stratification. Strong bulk flows convected the inhomogeneities through the measurement area near the spark plug resulting in both large intracycle and cycle-to-cycle variation in equivalence ratio at the time of ignition.
Technical Paper

The Texas Project: Part 3 - Off-Cycle Emissions of Light-Duty Vehicles Operating on CNG, LPG, Federal Phase 1 Reformulated Gasoline, and/or Low Sulfur Certification Gasoline

1996-10-01
962100
Off-cycle emissions from seven different types of 1994 light-duty vehicles were examined The test fleet consisted of 19 individual vehicles including a passenger car, two makes of light light-duty trucks, and five types of heavy light-duty trucks The driving cycles used for these tests were the US06(hard acceleration, high speed) cycle and the 20 °F FTP (the “Cold FTP”) Conventional FTPs were done for comparison Each vehicle was usually operated on at least two of the following CNG, LPG, Federal Phase 1 reformulated gasoline (FP1 RFG), and a low sulfur certification gasoline For both the conventional FTP and the US06 cycles, the alternative fuels produce statistically significant benefits in Ozone Forming Potential and exhaust toxics but the NOx emissions are not statistically different from those when operating on FP1 RFG with at least 90% confidence During Cold FTP tests, the emissions of CO and of toxics when operating on FP1 RFG are not statistically different from those when operating on a low sulfur certification gasoline In contrast the alternative fuels produce statistically significant benefits in the emissions of both CO and toxics compared to either of the gasolines during Cold FTP tests The Reactivity Adjustment Factor calculated from the present conventional FTP results for CNG agrees closely with the CARB value However, the present RAF for LPG is about half CARB s value, which is believed to be a consequence of the low propene in Texas LPG compared to the high propene in California LPG The effects of the test type on the emissions are also discussed
Technical Paper

The Texas Diesel Fuels Project, Part 4: Fuel Consumption, Emissions, and Cost-Effectiveness of an Ultra-Low-Sulfur Diesel Fuel Compared to Conventional Diesel Fuels

2005-04-11
2005-01-1724
The Texas Department of Transportation (TxDOT) began using an ultra-low-sulfur, low aromatic, high cetane number diesel fuel (TxLED, Texas Low Emission Diesel) in June 2003. They initiated a simultaneous study of the effectiveness to reduce emissions and influence fuel economy of this fuel in comparison to 2D on-road diesel fuel used in both their on-road and off-road equipment. The study incorporated analyses for the fleet operated by the Association of General Contractors (AGC) in the Houston area. Some members of AGC use 2D off-road diesel in their equipment. One off-road engine, two single-axle dump trucks, and two tandem-axle dump trucks were tested. The equipment tested included newer electronically-controlled diesels. The off-road engine was tested over the TxDOT Telescoping Boom Excavator Cycle. The dump trucks were tested using the “route” technique over the TxDOT Single-Axle Dump Truck Cycle or the TxDOT Tandem-Axle Dump Truck Cycle.
Technical Paper

Effects of Load on Emissions and NOx Trap/Catalyst Efficiency for a Direct Injection Spark Ignition Engine

1999-05-03
1999-01-1528
A 1998 Toyota Corona passenger car with a direct injection spark ignition (DISI) engine was tested at constant engine speed (2000 rpm) over a range of loads. Engine-out and tailpipe emissions of gas phase species were measured each second. This allowed examination of the engine-out emissions for late and early injection. Regeneration of the lean NOx trap/catalyst was also examined, as was the efficiency of NOx reduction. NOx stored in the trap/catalyst is released at the leading edge of regenerations, such that the tailpipe NOx is higher than the engine-out NOx for a brief period. The efficiency of NOx reduction was <50% for the lowest loads examined. As the load increased, the efficiency of NOx reduction decreased to near 0% due to excessive catalyst temperatures. Loads sufficiently high to require a rich mixture produce high NOx reduction efficiencies, but in this case the NOx reduction occurs via the three-way catalysts on this vehicle.
Technical Paper

Emissions and Fuel Economy of a 1998 Toyota with a Direct Injection Spark Ignition Engine

1999-05-03
1999-01-1527
A 1998 Toyota Corona passenger car with a direct injection spark ignition (DISI) engine was tested via a variety of driving cycles using California Phase 2 reformulated gasoline. A comparable PFI vehicle was also evaluated. The standard driving cycles examined were the Federal Test Procedure (FTP), Highway Fuel Economy Test, US06, simulated SC03, Japanese 10-15, New York City Cycle, and European ECE+EDU. Engine-out and tailpipe emissions of gas phase species were measured each second. Hydrocarbon speciations were performed for each phase of the FTP for both the engine-out and tailpipe emissions. Tailpipe particulate mass emissions were also measured. The results are analyzed to identify the emissions challenges facing the DISI engine and the factors that contribute to the particulates, NOx, and hydrocarbon emissions problems of the DISI engine.
X