Refine Your Search

Search Results

Viewing 1 to 11 of 11
Technical Paper

Development and Application of a 1-Dimensional Model for a NOx Trap System

2006-10-16
2006-01-3445
A one-dimensional model of a NOx trap system was developed to describe NOx storage during the lean operation, and NOx release and subsequent reduction during the rich regeneration process. The development of a NOx trap model potentially enables the optimisation of catalyst volume, precious metal loading, substrate type and regeneration strategy for these complex systems. To develop a fundamental description of catalytic activity, experiments were conducted to investigate the key processes involved in isolation (as far as possible), using a Pt/Rh/BaO/Al2O3 model catalyst. A description of the storage capacity as a function of temperature was determined using NOx breakthrough curves and the storage portion of more dynamic lean-rich cycling experiments. NOx breakthrough curves were also used for determination of rate of NOx storage. Kinetics for NOx reduction, as well as CO and HC oxidation, were determined using steady state reactor experiments.
Technical Paper

Emission Control Options to Achieve Euro IV and Euro V on Heavy Duty Diesel Engines

2008-01-09
2008-28-0021
The modern Diesel engine is one of the most versatile power sources available for mobile applications. The high fuel economy and torque of the Diesel engine has long resulted in global application for heavy-duty applications. Moreover, the high power and excellent driveability of today's turbo-charged small high-speed Diesel engines, coupled with their low CO2 emissions, has resulted in an increasing demand for Diesel powered light-duty vehicles. However, the demand for Diesel vehicles can only be realised if their exhaust emissions meet the increasingly stringent emissions legislation being introduced around the world. In the USA, both HDD and LDD vehicles are meeting strict emissions legislations since 2007 with the introduction of particle filters which will be further restricted from 2010 with the use of additional NOx contr5ol systems. In Europe, similar strict requirements are being implemented with Euro IV, Euro V and finally through Euro VI legislations.
Technical Paper

Modeling an Ammonia SCR DeNOx Catalyst: Model Development and Validation

2004-03-08
2004-01-0155
A 1-D numerical model describing the ammonia selective catalytic reduction (SCR) de-NOx process has been developed based on data measured on a laboratory microreactor for a vanadia-titania washcoated catalyst system. Kinetics for various NH3-NOx reactions were investigated, as well as those for ammonia, CO and hydrocarbon oxidation. The model has been successfully validated against engine bench measurements, over light-off and ESC tests, under a wide range of conditions, e.g. flow rate, temperature, NO2/NO ratio, and ammonia injection rate. A very good agreement between the experimental data and the model has been achieved. The model has now been used to predict the effect of NO2/NO ratio on NOx conversion, and the effect of different ammonia injection rates on the efficiency of the SCR process.
Technical Paper

Developments In Diesel Emission Aftertreatment Technology

2003-11-18
2003-01-3753
The modern Diesel engine is one of the most versatile power sources available for mobile applications. The high fuel economy and torque of the Diesel engine has long resulted in global application for heavy-duty applications. Moreover, the high power and excellent driveability of today's turbo-charged small high-speed Diesel engines, coupled with their low CO2 emissions, has resulted in an increasing demand for Diesel powered light-duty vehicles. However, the demand for Diesel vehicles can only be realised if their exhaust emissions meet the increasingly stringent emissions legislation being introduced around the world. In the USA, light-duty Diesel (LDD) vehicles will have to meet the same emissions legislation as gasoline vehicles from 2004 onwards, while in Europe a similar target is expected when European Stage 5 legislation is introduced.
Technical Paper

Optimising the Low Temperature Performance and Regeneration Efficiency of the Continuously Regenerating Diesel Particulate Filter (CR-DPF) System

2002-03-04
2002-01-0428
As legislation tightens in the Heavy Duty Diesel (HDD) area it is essential to develop systems with high activity and excellent durability for both Particulate Matter (PM) and NOx control. The Continuously Regenerating Trap (CRT™) system controls hydrocarbon (HC), CO and PM emissions from HDD vehicles with efficiencies of over 90%, and has demonstrated very good field durability over distances exceeding 700,000 km. The system is widely used in Europe, and is demonstrating the same high performance and excellent durability within field applications in North America. The Continuously Regenerating Trap (CRT™) system has been developed and patented by Johnson Matthey [1]. Throughout this paper this system will be referred to as the Continuously Regenerating Diesel Particulate Filter, CR-DPF. The CR-DPF comprises an oxidation catalyst, optimised for NO2 generation from the engine-out NOx, and a downstream DPF.
Technical Paper

The Development and Performance of the Compact SCR-Trap System: A 4-Way Diesel Emission Control System

2003-03-03
2003-01-0778
The tightening of Heavy Duty Diesel (HDD) emissions legislation throughout the world is leading to the development of emission control devices to enable HDD engines to meet the new standards. NOx and Particulate Matter (PM) are the key pollutants which these emission control systems need to address. Diesel Particulate Filters (DPFs) are already in use in significant numbers to control PM emissions from HDD vehicles, and Selective Catalytic Reduction (SCR) is a very promising technology to control NOx emissions. This paper describes the development and performance of the Compact SCR-Trap system - a pollution control device comprising a DPF-based system (the Continuously Regenerating Trap system) upstream of an SCR system. The system has been designed to be as easy to package as possible, by minimising the total volume of the system and by incorporating the SCR catalysts on annular substrates placed around the outside of the DPF-based system.
Technical Paper

Field Test Trucks Fulfilling EPA'07 Emission Levels On-Road by Utilizing the Combined DPF and Urea-SCR System

2006-04-03
2006-01-0421
Two campaigns measuring on-road emissions of 23 VN-trucks on a randomly chosen driving cycle, consisting of 10 miles two-lane and 8 miles four-lane road were performed. The first, during October 2004, showed tailpipe NOx emissions on fleet average of 1.06 g/bhp-hr including the time the exhaust gas temperature was below 200°C. The second, during June 2005, showed tailpipe NOx emissions on fleet average of 1.13 g/bhp-hr including the time the exhaust gas temperature was below 200°C. Complementary measurements in a SET-cycle (13 point OICA-cycle) on a chassis dynamometer showed a tailpipe emission of 0.008 g PM per bhp-hr. Moreover, cost analysis show that the diesel fuel consumption remains unchanged whether the truck running on ULSD is equipped with a Combined Exhaust gas AfterTreatment System (CEATS) installed or not.
Technical Paper

Field Test Experience of a Combined DPF and Urea-SCR System Achieving EPA'07 Emission Levels

2005-11-01
2005-01-3575
On-road emission measurements of 23 VN-trucks on a randomly chosen driving cycle, consisting of 10 miles two-lane and 8 miles four-lane road, showed tailpipe NOx emissions on fleet average of 0.96 g/bhp-hr, or 1.06 g/bhp-hr when including the time the exhaust gas temperature was below 200°C. Complementary measurements in a SET-cycle (13 point OICA -cycle) on a chassis dynamometer showed a tailpipe emission of 0.008 g PM per bhp-hr. Moreover, cost analysis show that the diesel fuel consumption remains unchanged whether the truck running on ULSD is equipped with a Combined Exhaust gas AfterTreatment System (CEATS) installed or not.
Technical Paper

Development and Validation of a One-Dimensional Computational Model of the Continuously Regenerating Diesel Particulate Filter (CR-DPF) System

2005-04-11
2005-01-0954
Diesel emissions legislation continues to tighten around the world, and Particulate Matter (PM) emissions are currently the focus of much attention. Diesel PM can be controlled using Diesel Particulate Filters (DPFs), which can effectively reduce the level of carbon (soot) emissions to ambient background levels. In the Heavy Duty Diesel (HDD) area, the Continuously Regenerating Trap (CRT®) [1] has been widely applied in the retrofit market. This system will henceforth be referred to as the Continuously Regenerating DPF (CR-DPF). There are currently over 100,000 of these systems in use in retrofit applications worldwide. This system comprises a specially formulated Diesel Oxidation Catalyst (DOC) upstream of a DPF; the NO2 generated by the DOC is used to combust the carbon collected in the DPF at low temperatures. A model describing the performance of the CR-DPF has been developed.
Technical Paper

The Application of a NOx Absorber Catalyst System on a Heavy-Duty Diesel Engine

2005-04-11
2005-01-1084
The modern Diesel engine is one of the most versatile power sources available for mobile applications. The high fuel economy and power of the Diesel engine has long made it the choice for heavy-duty applications worldwide. Over the coming years, global emissions legislation applied to heavy-duty Diesel (HDD) engines will become more and more stringent, necessitating the use of advanced emissions control technologies. In particular, the coming exhaust gas emissions legislation focuses on particulate matter (PM) emissions and emissions of nitrogen oxides (NOx). A filtration device can control PM emissions, and a possible technology for the abatement of NOx emissions involves NOx absorber catalysts. This paper describes investigations into the activity and system behaviour of a prototype HDD exhaust system based on NOx absorber technology. The system consists of a “single leg” containing NOx absorber catalyst that is bypassed during rich regeneration of the NOx absorbers.
Technical Paper

An Integrated SCR and Continuously Regenerating Trap System to Meet Future NOx and PM Legislation

2000-03-06
2000-01-0188
The tightening NOx and particulate matter (PM) emission standards for heavy duty diesel powered vehicles are stimulating the development of aftertreatment systems to reduce NOx and PM emissions from such vehicles. Here we present data on a new system which combines NO2-based continuously regenerative trap particulate removal technology with urea-based Selective Catalytic Reduction (SCR) NOx removal technology. There are a number of beneficial synergistic effects associated with combining these two technologies, including a significant improvement in the low temperature NOx removal performance of the SCR system. The development of this PM/NOx control system is described, and the main features of this novel strategy are outlined. The PM/NOx control system has been evaluated on a number of different engines and over a number of different drive cycles.
X