Refine Your Search

Topic

Author

Affiliation

Search Results

Magazine

Autonomous Vehicle Engineering: March 2018

2018-03-08
Editorial Autonomy's data binge is more like a 5-course meal. Big Data, Big Challenges Cloud services and multiple partnerships are issues the mobility industry grapples with as data implications expand outside the vehicle. Reinventing the Automobile's Design The convergence of electric propulsion, Level 5 autonomy, and the advent of car-free urban zones, is driving new approaches to vehicle design and engineering. When Steering Isn't Steering Anymore High-level autonomy requires new thinking for even basic vehicle controls. Steer-by-wire technology eases some of the complexities automated driving presents-and offers desirable new possibilities. Autonomy and Electrification: A Perfect Match? Combining SAE Level 4/5 functionality and EV platforms brings chal-lenges-and opportunities for cost reduction and systems optimization. Who's Ahead in the Automated-Driving Race? The 2018 Navigant Research Leaderboard study brings interesting insights on the industry's progress.
Standard

Nomenclature & Definitions for Electrified Propulsion Aircraft

2019-02-28
WIP
ARP8676
Create and publish a list of terms relevant to electrified propulsion aircraft with summary text descriptions. The terms and description will not provide full explanations, diagrams, and other detailed technical descriptions. These deeper descriptions will be addressed in other documents.
Standard

Safety Considerations for Electrified Propulsion Aircraft

2019-04-02
WIP
ARP8677
This SAE Aerospace Recommended Practice (ARP) discusses particularities to be considered when performing the safety assessment of electrified propulsion aircraft. Its main focuses are: • The failure modes of electrified propulsion components • Methods to evaluate failure rates of electrified propulsion components • Effects of failures on example electrified propulsion system and aircraft architectures • Particular risks, common causes, and zonal considerations specific to electrified propulsion The guidance in this document may be used to generate inputs for system and aircraft safety assessment activities.
Standard

Architecture Examples for Electrified Propulsion Aircraft

2019-05-07
WIP
AIR8678
The application of electric power for aircraft propulsion can take a variety of forms, ranging from partial electric to full electric. The introduction of electric motors to drive propulsors, along with the variety of available methods to generate electricity and store energy offers great degree of new design freedom for new aircraft and aircraft architectures. This newfound design freedom exposes a need within the aviation industry to establish a common design language for electrified propulsion. While this need for a common design language is recognized, the intent of this document is to encourage innovation, providing reference architectures as a launching point for future work in this area. This document will categorize potential electrified propulsion architectures and provide examples.
Standard

Electric Drivetrain Fluids (EDF)

2019-04-24
WIP
J3200
This SAE Information Report is to assist those concerned with lubricants used in drivetrain components powered by electric powerplants. The information contained herein will be helpful in understanding the terms related to the properties of a lubricant used in electric drivetrains.
Standard

Compatibility of Turbine Lubricating Oils

2019-07-16
WIP
ARP7120
This method is used for determining the compatibility of a candidate lubricant with specific reference lubricants. The reference lubricants will typically be mandated by the product specification against which the candidate lubricant is being compared. This method is based on Federal Standard 791 method 3403 and Defence Standard 05-50 (Part 61) method 24, incorporating the modifications called for in SAE AS5780.
Technical Paper

The Development of Plastic Lenses for Vehicle Headlamps

1996-04-01
91A111
The pending changes in European law enabling the use of plastic lenses on vehicle headlamps provide an opportunity for further advancement of vehicle styling, lighting performance and aerodynamic efficiency. Plastic lenses can also provide a useful weight saving and contribute to energy savings during the lifetime of the vehicle. This paper discusses the current requirements, technologies and solutions for plastic lenses, and indicates the way this advance can impact on the evolution of lighting products.
Technical Paper

Fe Model Adjustment of a Composite Material Car-Body By Means of Experimental Modal Analysis on the Prototype

1996-04-01
91A095
A procedure adopted to verify and update the finite elements model of an electric powered car-body manufactured from composite materials is described. Experimental results, obtained from modal testing of the prototype, are used in order to identify and correct discrepancies in the FE model. The availability of a highly reliable FE model allows to simulate structural modifications by computer, optimizing the use of composites and reducing in the same time at minimum prototypes construction. The approach followed suggests a possible remarkable reduction in product development costs and duration. The work has been performed within a larger program for the development of thermoplastic composite materials, with particular attention to transportation market.
Technical Paper

Optimisation of Diesel Engines Converted to High Compression Spark Ignition (SI) Natural Gas Operation

1988-03-01
871149
There is a strong interest around the world in natural gas as an alternative fuel. This paper is concerned with the option of converting diesel engines to spark ignition operation. Although this may appear to be an outrageous thermodynamic action, it is preferable to using natural gas in a low compression gasoline engine conversion. An investigation is described in which engine maps were produced for a 5.6 litre direct injection diesel engine converted to CNG. The diesel operating characteristics have been compared with those of the spark ignition conversion at compression ratios of 18:1 (the original diesel value), 15:1 and 13:1. Detailed data are presented for the 15:1 compression ratio. These test results are supplemented by results for other diesel conversions. The use of these engines in bus fleet operations is also discussed.
Technical Paper

Trends and Forecasts for Turbocharging

1988-03-01
871147
Predictable and unpredictable forces will change the direction of the charge-air systems industry. The driver of diesel engine development will be the stringent emissions regulations of the 1990s. The drivers in the gasoline engine market will be improved fuel economy, performance, durability and emissions. Forces will also influence the charge-air marketplace, including changes in emission standards, national fiscal policies, political issues, fuel prices, alternate fuels and consumer tastes. The world community mandate for engines that are clean, quiet, durable and fuel efficient will be satisfied, increasingly, by first-tier component suppliers developing integrated systems solutions.
Technical Paper

Performance and Exhaust Emission in Spark Ignition Engine Fueled with Methanol-Butane Mixture

1988-03-01
871165
To improve the cold startability of methanol, methanol-butane mixed fuel was experimented. Engine performance and exhaust emissions are obtained with methanol-butane mixed fuel. These characteristics are compared with those of methanol and gasoline. The mixing ratios of methanol and butane are 50:50 (M50), 80:20 (M80), and 90:10 (M90) based on the calorific value. As a result, M90 produces more power than gasoline and more or less than methanol depending on the engine speed and the excess air ratio. Brake horse power of M90 is higher than that of gasoline by 5 - 10 %, and brake specific fuel consumption is smaller than that of gasoline by 17 % to the maximum based on the calorific value. NOx emission concentrations for M90 are lower than those for gasoline and higher than those for methanol because of the effect of butane, CO emission concentrations are somewhat lower than those for methanol and gasoline.
Technical Paper

“Passenger Vehicle Petrol Consumption - Measurement in the Real World”

1988-03-01
871159
A survey of the in-service fuel consumption of passenger vehicles and derivatives in the Australian fleet was carried out in 1984-85. Seven hundred and four owners across Australia took part in the survey. Vehicle owners reported by questionnaire the amount of fuel used during four tank fills of normal operation, the distance travelled, and other details of the operating circumstances. The survey shows a clear downward trend in the fuel consumption of the Australian passenger fleet. The data also provides comparisons of actual fuel consumption obtained on the road, with laboratory derived values for fuel consumption. Vehicles in a sub-set of 40 were fitted with fuel flow meters during the survey and tested to Australian Standard 2077 for fuel consumption. The questionnaire method is shown to be a valid and accurate technique for determining in-service fuel consumption.
Technical Paper

A Procedure for Evaluating Cycle Emissions from Raw Exhaust Gas Analyses

1988-03-01
871194
A procedure has been developed for evaluating equivalent drive cycle emission results from raw exhaust gas emissions data obtained from an engine under test on a computer controlled Vehicle Simulator Engine Dynamometer. The emitted species data is integrated with the air intake flow rate to determine the total mass of emissions, after correcting for the reduction in exhaust gas mass due to precipitation of the moisture of combustion. This procedure eliminates the need for the Constant Volume Sample (CVS) System attached to the vehicle exhaust while undergoing simulated drive testing on a chassis dynamometer to evaluate compliance of the test vehicle with the Australian Design Rules, ADR27 and ADR37. Sources of error with the procedure are examined by comparing the fuel consumption measured using a volumetric technique during the test with that evaluated by a carbon balance procedure as given in the Australian Design Rules.
Standard

Key Lubricant Performance Properties for Advanced Aircraft Engines

2019-12-04
WIP
AIR7448
The scope of this document is limited to the lubrication system of a conceptual high performance aircraft turbine engine. This document will not present or disclose any specific design data leading to the specific formulation of an advance engine lubricant or that of an advanced engine. General trends are presented based upon current literature and observations of lubricant/engine experience.
Technical Paper

Use of Statistical Energy Analysis Method to Predict Sound Transmission Loss of Sound Barrier Assemblies

1999-05-17
1999-01-1707
Statistical Energy Analysis (SEA) method is used to predict Sound Transmission Loss (STL) of sound barrier assemblies (SBA) commonly used in automotive dashmat design. Tests are performed for dashmat plaques with and without design features, and SEA equations have been used for predicting transmission loss with acceptable accuracy below the interception (cavity resonance) frequency. For frequency range higher than interception point, the SEA software used overestimates STL. For dashmat tests with design features, test results and SEA predictions are generally agreeable.
Technical Paper

Electric Vehicle Sound Quality

1999-05-17
1999-01-1694
Environmental concerns as well as regulatory requirements are driving the development of alternative vehicle propulsion systems. Electric vehicles (EV's) are attractive because they emit no pollutants. In this paper, we examine the sound quality characteristics of wind and powertrain noise in electric vehicles. Sound quality is an important attribute of EV's, because the expectation is that they will be very quiet due to the absence of an internal combustion engine. As we show in this paper, the absence of engine noise is both a blessing and a curse for sound quality. For wind noise, the results show that electric and gasoline vehicles have equivalent wind noise loudness levels at all speeds. However, at lower speeds (50-60 mph), the EV is judged to have more wind noise even though the level was the same as the gasoline vehicle! The difference is that, in the EV, there is no engine noise to mask the wind noise.
Technical Paper

The Effects of Retained Fluid and Humidity on the Evacuation of Critical Vehicle Systems

1999-05-10
1999-01-1630
In automotive assembly facilities worldwide, many critical vehicle systems such as brakes, power steering, radiator, and air conditioning require the appropriate fluid to function. In order to insure that these critical vehicle systems receive the correct amount of properly treated fluid, automotive manufacturers employ a method called Evacuation and Fill. Due to their closed-loop design, many critical vehicle systems must be first exposed to vacuum prior to being flooded with fluid. Only after the evacuation and fill process is complete will the critical vehicle system be able to perform as specified. It has long been thought, but never proven, that humidity and entrenched fluid were major hindrances to the Evacuation and Fill process. Consequently, Ford Motor Company Advanced Manufacturing Technology Development, Sandalwood Enterprises, Kettering University, and Dominion Tool & Die conducted a detailed project on this subject.
Technical Paper

Effect of High Squish Combustion Chamber on Simultaneous Reduction of NOx and Particulate from a Direct-Injection Diesel Engine

1999-05-03
1999-01-1502
In this study it is tried to reduce NOx and particulate emissions simultaneously in a direct injection diesel engine based on the concept of two-stage combustion. At initial combustion stage, NOx emission is reduced with fuel rich combustion. At diffusion combustion stage, particulate emission is reduced with high turbulence combustion. The high squish combustion chamber with reduced throat diameter is used to realize two-stage combustion. This combustion chamber is designed to produce strong squish that causes high turbulence. When throat diameter of the high squish combustion chamber is reduced to some extent, simultaneous reduction of NOx and particulate emissions is achieved with less deterioration of fuel consumption at retarded injection timing. Further reduction of NOx emission is realized by reducing the cavity volume of the high squish combustion chamber. Analysis by endoscopic high speed photography and CFD calculation describes the experimental results.
X