Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Derivation of the Force Interaction within Strongly Coupled Systems - Application to Diesel Engine Oil Pumps

2011-05-17
2011-01-1531
Due to the increasing focus on noise and vibration for future vehicles, there is a need for a clear definition of the requirements between vehicle manufacturers and auxiliary suppliers. Auxiliary characterisations are also needed as input for structure-borne numerical prediction models. Strongly coupled systems are amongst the most difficult structure-borne noise issues, as the transmitted forces and powers are strongly dependent upon the mobilities of both the vibration source and receiver. The so-called “blocked forces” can be used as intrinsic source descriptions. The challenge is then to design auxiliary test benches perfectly rigid in the frequency range of interest. The current paper is based on the French research program MACOVAM dedicated to the vibro-acoustic characterisation of oil pumps for truck engines. An original test bench was designed to measure quasi-blocked forces over the [150 Hz-2800 Hz] frequency range.
Technical Paper

A Study on the Mechanism of Engine Oil Consumption- Oil Upwards Transport via Piston Oil Ring Gap -

2011-04-12
2011-01-1402
Reduction of oil consumption of engines is required to avoid a negative effect on engine after treatment devices. Engines are required fuel economy for reduction of carbon-dioxide emission, and it is known that reduction of piston frictions is effective on fuel economy. However friction reduction of pistons sometimes causes an increase in engine oil consumption. Therefore reduction of engine oil consumption becomes important subject recently. The ultimate goal of this study is developing the estimation method of oil consumption, and the mechanism of oil upward transport at oil ring gap was investigated in this paper. Oil pressure under the oil ring lower rail was measured by newly developed apparatus. It was found that the piston slap motion and piston up and down motion affected oil pressure rise under the oil ring and oil was spouted through ring-gap by the pressure. The effect of the piston design on the oil pressure generation was also investigated.
Technical Paper

Frictional Characteristics of Ultrasonically Measured Lubricant Films in a Simulated Piston Ring Liner Contact

2011-04-12
2011-01-1400
An essential part of the total parasitic loss in an IC engine is due to the piston ring and liner friction. In this work, a piston ring-liner reciprocating test rig combined with ultrasonic film thickness measurement system was used to understand frictional characteristic of the lubricant that formed in the contact. Two test procedures were carried out for two lubricants with different viscosities. These procedures were a step load increment at a constant speed and a step speed increment at a constant load. The results showed that the piston ring-liner contact was in boundary lubrication regime for low operating speeds at high load. This was consistent with the oil film thickness data. However, mixed lubrication regime was observed for high operating speeds at low loads. The lubricant film thicknesses increased with speed and decreased with load.
Journal Article

Analysis of Piston Friction - Effects of Cylinder Bore Temperature Distribution and Oil Temperature

2011-08-30
2011-01-1746
Hybrid vehicles (HVs) are becoming more widely used. Since HVs supplement engine drive with motor power, the lubricant oil temperature remains at a lower level than in a conventional gasoline vehicle. This study analyzed the effect of cylinder bore temperature and lubricant oil temperature on engine friction. The results showed that, although the lubricant oil temperature was not relevant, the bore temperature had significant effect on piston friction. It was found that raising the temperature of the middle section of the cylinder bore was the most effective way of reducing piston friction.
Journal Article

Additive Formulation Technology for Fuel Economy Passenger Car Motor Oil and Development of Sequence VID Screener

2011-08-30
2011-01-2111
Fuel economy is one of the most essential performance requirements for Passenger Car Motor Oil because of fuel economy regulations in many countries and increasing fuel prices. The ILSAC GF-5 specification was issued on December 22, 2009 and requires better fuel economy performance based on the Sequence VID (Seq. VID) Test and higher weighted piston deposit merits based on the Sequence IIIG Test, compared to the ILSAC GF-4 specification. Fuel economy performance is affected by viscosity, friction modification and the lubricant additive chemistries. However, fuel economy engine tests under combustion mode introduce high variability into a fuel economy measurement. Screening by bench testing is complicated by the difficulty to reproduce friction conditions of all of engine parts. A motored friction torque test using an engine is one of the better solutions for fuel economy screening.
Technical Paper

Field Test of Semi-permanent use of Engines and Lube Oil with Almost No Wear and with Constant Thermal Efficiency

2011-08-30
2011-01-2113
A new type of lube oil cleaning system is successfully developed for semi-permanent use of oil by always keeping oil clean with the result of no oil change and no waste oil. It is in practical use in many marine diesel engines and in some other fields. In recent years, possibility of semi-permanent use of engines themselves has been expected based on the field data. A ship test for 7 years has verified the expected semi-permanent use of engines with almost no wear and constant thermal efficiency during the test. We present the characteristics of the oil cleaning system and the result of the test. Also, a new type of fuel oil cleaning system is presented which is useful for cleaning low quality fuel oil. As a whole, this test is the beginning of the new stage of our work following the semi-permanent use of lube oil, which has been verified and established in many diesel engines since the 1980s.
Journal Article

Investigation of Wear in Heavy Duty Diesel Engines: Part I - Use of Radioactive Tracer Technology

2011-08-30
2011-01-2114
This paper is first in a series of papers designed to investigate wear processes in modern heavy duty diesel engines. The objective of the series is to discuss the effects that engine drive cycle, lubricant formulations and in-service ageing of lubricants have on wear of critical engine components. In this paper, the Radioactive Tracer Technology technique was used to study the steady state wear behavior of a number of contacting surfaces in a Caterpillar 1P engine, as a function of the drive cycle. A test protocol consisting of 7 modes or stages was used to simulate a variety of drive cycles. The results from this work provide useful insights into the wear behavior of these surfaces under a variety of speed and load conditions.
Technical Paper

Impacts on Engine Oil Performance by the Use of Waste Cooking Oil as Diesel Fuel

2011-08-30
2011-01-2115
Technical impacts on engine oil performance by the use of waste cooking oil as bio-diesel fuel (BDF) are not well understood while the industry has made significant progress in studies on quality specifications and infrastructure. The authors, who consist of a consortium organized by Japan Lubricating Oil Society (JALOS), examined technical effects of waste cooking oil as BDF on engine oil performance such as wear and high temperature corrosion using vehicle fleets and bench tests to identify technical issues of engine oil meeting the use of BDF. The study brings fundamental information about technical impacts of BDF on engine oils.
Technical Paper

Low Emission Engines: Advantages on the Use of Radiotracer Techniques for the Development of Modern Engines and Lubricants

2009-06-15
2009-01-1873
New environmental regulations require significant reduction of fuel consumption and engine emissions. This implies improvement of the internal combustion (I.C.) process, reduction of friction, development of complex after-treatment systems, and a reduction of oil consumption. New technical challenges are related to fuel dilution problems in diesel and super-ethanol engines; new wear problems are due to fuel dilution and soot loading in the lubricant; clogging and poisoning problems of after-treatment systems are related to oil consumption, etc. Therefore, researchers and engineers need appropriate tools to better understand and solve these new problems. The paper focuses on the combination of modern engine test beds equipped with innovative radionuclide techniques for real-time oil consumption, oil aeration, fuel dilution, and for on-line wear measurement.
Technical Paper

Engine Oil Air Entrainment and Release - Preliminary Studies

2009-06-15
2009-01-1874
Modern engines rely more and more on the engine oil to serve increasingly complex hydraulic functions such as, for example, controlling cylinder deactivation - a means of significantly increasing fuel efficiency. However, the success of hydraulic methods of activating mechanical responses in engines (or other devices) is dependent on the degree of incompressibility of the hydraulic fluid. As a consequence, those engine oil properties that impart susceptibility to foam formation in areas of hydraulic operations of the engine are detrimental to the engine's performance and durability. This paper is an initial study of aeration, air entrainment, and air release under pressure decrease using a simple bench test. The preliminary information reported suggests the potential application of the instrumental approach developed to measure the rate of foam formation from the air entrained in engine oils and the resistance of such foam to collapse.
Technical Paper

An Engine Test to Assess the Effect of Fuels and Lubricating Oils on Soot Loading of Diesel Particulate Filters

2009-06-15
2009-01-1871
A test procedure was set up in our laboratories to evaluate the propensity of fuels and lubricating oils towards the soot accumulation in Diesel Particulate Filters. The experimental work was carried out with the use of a passenger car diesel engine, retrofitted with an aftertreatment system composed by an oxidation catalyst and a DPF. The soot propensity was evaluated by means of repeated measurements of differential exhaust backpressure gradient, during a running period at mid load and speed. The specific fuel consumption gradient was also measured to find a correlation between both the variables. After each soot loading period, a burning off period at full load was operated for the purpose of filter regeneration. A two-phase experiment was undertaken to assess repeatability and discrimination capability of the test procedure. During the first experimental phase, repeated tests were conducted on a fuel matrix containing some surrogate fuels.
Technical Paper

Analysis of Engine Oil Deterioration under Bio Diesel Fuel Use

2009-06-15
2009-01-1872
The research discussed in this paper clarified the effect of biodiesel fuel (BDF) on two effective deterioration indexes of engine oil, the base number (BN) and the oxidation induction time (OIT). The results of rig tests of oil deterioration using an engine oil mixed with BDF showed that BDF, which contains a large number of unsaturated bonds, accelerates engine oil deterioration.
Technical Paper

Analysis of Air/Cavitation Interaction Inside a Rotary Vane Pump for Application on Heavy Duty Engine

2009-06-15
2009-01-1943
This paper deals with a CFD three-dimensional multiphase simulation of rotary vane pump. The paper presents a suitable methodology for the investigation of the cavitation effects and/or incondensable gases. All the 3D simulations were performed by using Fluent v12 (Beta version). A moving mesh methodology was defined to reproduce the change-in-time shape of the internal pump volumes. In particular, the pump analysis was focused on the generation, and evolution of the cavitation phenomena inside the machine to identify the locations where this phenomena could occur. Moreover, the influence of incondensable gas dissolved inside the operator fluid on both pump performance and cavitation evolution was evaluated. Significant results were obtained about the analysis of incondensable gas influence on the cavitation evolution showing that, today, CFD analysis can provide detailed information on such harmful phenomena which can not be achieved by experiments.
Journal Article

Experimental Procedure for Measuring the Energy Consumption of IC Engine Lubricating Pumps during a NEDC Driving Cycle

2009-06-15
2009-01-1919
The paper presents an experimental procedure for comparing different families of IC Engine lubricating pumps in terms of total consumed energy in a NEDC driving cycle. Measures are performed on a test rig able to reproduce the oil temperature profile, the lubrication circuit permeability and its variation during the engine warm-up. The pump under test is driven by a variable speed electric motor supplying the engine velocity profile of the driving cycle. The load on the pump is generated by means of a variable restrictor controlled in a closed loop by a proper combination of speed, temperature, flow rate and pressure signals in order to replicate the typical permeability of the lubricating circuit.
Technical Paper

Development of Catalyst-Friendly FC-W® Certified Marine Oils Utilizing Novel ZDP Technology

2009-11-03
2009-32-0075
Phosphorus is known to reduce the effectiveness of the three-way catalysts commonly used by automobile manufacturers by deactivating the catalyst. This process occurs as zinc dialkyldithiophosphate (ZDP) decomposes in the engine oil, creating many phosphorus species, which provide excellent wear protection of the engine but can also interact with the active sites of the three-way catalyst. This reactivity has led to API specifications for engine oils with lower concentrations of phosphorus. In order to further minimize catalyst deactivation without compromising wear protection, a novel ZDP technology was designed for engine oil applications. This novel ZDP was designed to minimize the amount of phosphorus produced via volatilization during engine operation while maintaining engine wear protection.
Technical Paper

Performance of Motorcycle Engine Oil with Sulfur-Based Additive as Substitute Zn-DTP (Part II)

2009-11-03
2009-32-0080
As well as a four-wheeled vehicle, in the field of motorcycle, development of the CO2 reduction technology and practical use are required for global environment. Zinc dialkyldithiophosphate (Zn-DTP) type additives are widely used for engine oil formulations. However, phosphorus compounds are environmental load materials. The reduction of the quantity of phosphorus compounds in engine oils is required to reduce poisoning of three-way catalysts used to purify exhaust gases from internal combustion engines. Ito1) reported that they developed a sulfur-based additive as a substitute for Zn-DTP. Their non-phosphorus engine oil formulation for four-wheeled vehicles with a sulfur-based additive was examined to evaluate its anti-wear performance using the following test methods: JASO M328 for gasoline engines (KA24E) and JASO M354 for Diesel engine (4D34T4).
Technical Paper

Straight vegetable Oil Run Diesel Engine - A Compromise Solution

2009-12-13
2009-28-0033
The fuel crises of the 1970's and early 1980's focused attention on the desirability of developing alternative fuels and decreasing the dependency on petroleum-based fuels. Vegetable oils and derivatives are among the materials that were extensively investigated as alternative diesel fuels. Vegetable oils are a potential alternative to the partial or total substitution of diesel fuels. It was known that short-term engine tests have been successful with vegetable oils; however, long-term tests have revealed the fuel limitations regarding lubricating oil contamination, deposits on engine surfaces and performance problems. This study shows how the added advantages of air-cooled engine over the water-cooled engine become the preferred choice for the SVO run diesel engine. Based on the 100 hrs SVO run diesel engine, the modification has been carried out for the long run. Different emission measurements were carried out and studied in comparison with conventional diesel.
Journal Article

Study of the Impact of High Biodiesel Blends on Engine Oil Performance

2011-08-30
2011-01-1930
In Biodiesel Fuel Research Working Group(WG) of Japan Auto-Oil Program(JATOP), some impacts of high biodiesel blends have been investigated from the viewpoints of fuel properties, stability, emissions, exhaust aftertreatment systems, cold driveability, mixing in engine oils, durability/reliability and so on. This report is designed to determine how high biodiesel blends affect oil quality through testing on 2005 regulations engines with DPFs. When blends of 10-20% rapeseed methyl ester (RME) with diesel fuel are employed with 10W-30 engine oil, the oil change interval is reduced to about a half due to a drop in oil pressure. The oil pressure drop occurs because of the reduced kinematic viscosity of engine oil, which resulting from dilution of poorly evaporated RME with engine oil and its accumulation, however, leading to increased wear of piston top rings and cylinder liners.
Journal Article

Interrogating the surface: the effect of blended diesel fuels on lubricity

2011-08-30
2011-01-1940
The lubricating properties of two sustainable alternative diesels blended with ultra low sulphur diesel (ULSD) were investigated. The candidate fuels were a biodiesel consisting of fatty acid methyl esters derived from rapeseed (RME) and gas-to-liquid (GTL). Lubricity tests were conducted on a high frequency reciprocating rig (HFRR). The mating specimen surfaces were analysed using optical microscopy and profilometery for wear scar diameters and profiles respectively. Microscopic surface topography and deposit composition was evaluated using a scanning electronic microscope (SEM) with an energy dispersive spectrometer (EDS). Like all modern zero sulphur diesel fuel (ZSD), GTL fuels need a lubricity agent to meet modern lubricity specifications. It has been proven that GTL responds well to typical lubricity additives in the marketplace.
Technical Paper

Simulation and Optical Analysis of Oil Dilution in Diesel Regeneration Operation

2011-08-30
2011-01-1844
High levels of exhaust temperature or rich mixtures are necessary for the regeneration of today's diesel particulate filters or NOx catalysts. Therefore, late main injection or post injection is an effective strategy but leads to the well-known problem of lubricating oil dilution depending on the geometry, rail pressure and injection strategy. In this paper a method is developed to simulate fuel entrainment into the lubricating oil wall film in the diesel combustion chamber to predict oil dilution in an early design stage prior to hardware availability for durability testing. The simulation method integrates a newly developed droplet-film interaction model and is compared to results of an optical single-cylinder diesel engine and a similar thermodynamic single-cylinder test engine. Phenomena of diesel post injection like igniting early post injection or split post injections with short energizing times are considered in this paper.
X