Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Practical Considerations of Driveline Vibration and Acoustic Test Cell with Case Study of McLaren's Driveline Dynamometers

2011-05-17
2011-01-1645
Test Facilities for Vibrations and Acoustics can be very complicated. With the addition of necessary high power motor dynamometers for load application, the complexity of the test cell increases dramatically. The motors and subsequent additional fixtures and shafts necessary to apply loading conditions can produce additional source noises that would interfere with test measurements. In addition, facility interfaces can dramatically influence the test cell setup and reduce the measurement capabilities. This paper addresses common considerations needed in considering a new test cell for driveline vibration, acoustics, efficiency, and durability testing using motored dynamometers. In addition to outlining common design points, a practical application of 2 new dynamometers utilized for vibration, acoustics, efficiency, and durability testing and their subsequent capabilities are outlined.
Technical Paper

Measuring and Comparing Frequency Response Functions of Torque Converter Turbines Submerged in Transmission Fluid

2011-05-17
2011-01-1662
When testing dynamic structures, it is important to note that the dynamic system in question may be submerged into a fluid during operation and to properly test the structure under the same condition in order to understand the true dynamic parameters of the system. In this way, the mass and stiffness coupling to the particular fluid, for the case of this study, automatic transmission fluid, may be taken into account. This is especially important in light structures where the coupling between the fluid mass and the structural mass may be great. A structure was tested with a laser vibrometer using several impact methods in open air to determine which impact method would be most suitable for submerged testing. The structure was then submerged in transmission fluid with an accelerometer attached and subsequently tested and compared to the previous results.
Journal Article

Active Control of Gear Mesh Dynamics

2011-05-17
2011-01-1635
Gears are essential parts of many precision power and torque transmitting machines. However, the radiated intensive tonal noise due to the gear meshing is highly undesirable and annoying. In very severe cases, the gear vibrations can reduce the life and performance of the power transmitting components. Typical gearbox vibration and sound spectra contain several dominant narrowband tonal signals that are mixed in with a lower level broadband response signals. Hence, the control of mesh response of gearbox housing belongs to the problem of the rejection or cancellation of periodical disturbance. The frequencies of these tonal signals are related to the number of teeth and rotation speed, and highly predictable. Thus, a feedforward control system was normally adopted. In most of existed applications, an accurate reference based on the frequency information of tachometer pulse train signal is required for this kind of control system.
Technical Paper

Drive Rattle Elastodynamic Response of Manual Automotive Transmissions

2011-05-17
2011-01-1586
Modern automotive industry is driven by improved fuel efficiency, whilst simultaneously increasing output power and reducing size/weight of vehicle components. This trend has the drawback of inducing various Noise, Vibration and Harshness (NVH) concerns in the drivetrain, since fairly low energy excitation often suffices to excite natural modes of thin walled structures, such as the transmission bell housing. Transmission rattle is one of the many undesired NVH issues, originating from irregularities in engine torque output. The crankshaft speed fluctuations are transferred through the transmission input shaft. Transmission compactness also allows repetitive interaction of conjugate loose gear pairs. The engine fluctuations disturb the otherwise unintended, but orderly meshing of these loose gears. This often leads to radiation of a characteristic air-borne noise from the impact sites.
Journal Article

Dynamic Torque Characteristics of the Hydrodynamic Torque Converter

2011-05-17
2011-01-1540
The objective of this investigation is to characterize the torsional characteristics of the hydrodynamic torque converter. Analytical and experimental techniques are used to quantify the relationship between torsional oscillations imposed on the pump to those at the turbine as a function of frequency, operating point and design. A detailed model of the hydrodynamic torque converter based upon one-dimensional flow theory is used to establish fundamental torsional behavior independent of the downstream mechanical system. A simplified linear spring-mass-damper representation of the hydrodynamic torque converter is derived whose coefficients are proportional to pump speed for a particular design. A transmission dynamometer test cell with the capability to produce torsional oscillations was used to develop frequency response functions for various torque converters in a transmission, operating at steady state conditions.
Technical Paper

Torsional Analysis of Different Powertrain Configurations for Torque and Combustion Phase Evaluation

2011-05-17
2011-01-1544
This paper presents the results of several studies, performed on different powertrain configurations, aimed at analyzing the correlations existing between torque and speed frequency components in an internal combustion engine. Engine speed fluctuations depend in fact on torque delivered by each cylinder, therefore it is easy to understand how these two quantities are directly connected. The presented methodology allows identifying a dynamic model, expressed as a transfer function that depends only on the structure of the engine-driveline system. The identified model can be used to obtain information about torque delivered by the engine and combustion positioning within the engine cycle starting from engine speed measurement. The speed signal is picked up directly from the sensor facing the toothed wheel that is already mounted on the engine for control purposes.
Technical Paper

NVH Considerations for Zero Emissions Vehicle Driveline Design

2011-05-17
2011-01-1545
In response to environmental and fossil fuel usage concerns, the automotive industry will gradually move from Hybrid Electric Vehicles (HEV) which includes a shift of internal combustion engines toward Zero Emissions Vehicles (ZEV). Refinement is an important aspect in the successful adoption of any new technology and ZEV brings its own NVH challenges owing to the unique dynamic characteristics of the powertrain and driveline system. This paper presents considerations for addressing dynamic driveline NVH issues that are common to 100% electric vehicles; issues that manifest themselves as groans, rattles and clunks. A dynamic torsional analytical model of the powertrain & driveline will be presented. The analytical model served as the baseline for an extensive parametric study using the Genetic Algorithm (GA) technique, whereby the effectiveness of practical countermeasures was investigated.
Journal Article

Vehicle Design for Robust Driveline NVH Due to Imbalance and Runout Using a Monte Carlo Process

2011-05-17
2011-01-1546
Variation in vehicle noise, vibration and harshness (NVH) response can be caused by variability in design (e.g. tolerance), material, manufacturing, or other sources of variation. Such variation in the vehicle response causes a higher percentage of produced vehicles with higher levels (out of specifications) of NVH leading to higher number of warranty claims and loss of customer satisfaction, which are proven costly. Measures must be taken to ensure less warranty claims and higher levels of customer satisfaction. As a result, original equipment manufacturers have implemented design for variation in the design process to secure an acceptable (or within specification) response. This paper focuses on aspects of design variations that should be considered in the design process of drivelines. Variations due to imbalance and runout in rotating components can be unavoidable or costly to control.
Technical Paper

Attenuation of Driveline Vibrations through Tuning of Propeller Shaft Liners

2011-05-17
2011-01-1547
The installation of various liners into the propeller shaft tube is a traditional driveline NVH treatment to attenuate driveline vibration. The most commonly used liners include rolled paper, C-cut cardboard, corrugated cardboard, etc. These traditional liner treatments are expected to provide damping to the driveline system to reduce the vibration levels. However their added level of damping and effectiveness to the driveline system are limited, particularly when dealing with driveline gear mesh vibration and noise. This paper presents a novel type of liner treatment - tunable liners. The liner is designed such that it functions as a tuned dynamic vibration absorber. Through proper design of the liner, it can be tuned for bending and torsion modes at the same time. The liner design parameters and their impact on the frequency tuning are analyzed and studied through both physical testing and FEA analysis.
Journal Article

Nonlinear Characteristics Study and Parameter Optimization of DMF-RS

2011-05-17
2011-01-1550
Dual Mass Flywheel (DMF) has better damping capacity than the conventional Clutch Torsional Damper (CTD), and is more suitable for diesel engine, Dual Clutch Transmission (DCT) and hybrid vehicles. Dual Mass Flywheel-Radial Spring (DMF-RS) is a DMF that has a specific structure. In the light of working principal and static analysis, the hard nonlinear torsional stiffness of DMF-RS is derived in this paper, which is very important to a driveline damper. On this basis, a simulation model is developed to analyze the dynamic response of DMF and CTD excited by idle engine; the comparison of the two dampers reveals that the DMF has better damping capacity, high-frequency filter ability and can reduce crankshaft load.
Technical Paper

Effect of Shaft-bearing Configurations on Spiral Bevel Gear Mesh and Dynamics

2011-05-17
2011-01-1551
Spiral bevel gear dynamics are significantly affected by the flexibilities of shafts and bearings. In this study, a new shaft-bearing model has been proposed for computing the effective support stiffness. The results are applied to the lumped parameter dynamic model of spiral bevel geared rotor system with 3-bearing straddle-mounted pinion configuration. Also, using the multi-degree of freedom lumped parameter dynamic model and quasi-static three-dimensional finite element tooth contact analysis program, the responses of two typical shaft-bearing configurations used in automotive applications, that are the 3-bearing straddle mounted pinion configuration and the 2-bearing overhung mounted pinion configuration, are compared. The comparative analysis along with a set of parametric studies highlights their different contributions to the spiral bevel gear mesh characteristics and dynamic response.
Technical Paper

6 Speed Automatic Transmission Vibration Magnitude Prediction and Whine Noise Improvement through Transmission System Modeling

2011-05-17
2011-01-1553
Abstract As automotive technology has been developed, gear whine has become a prominent contributor for cabin noise as the masking has been decreased. Whine is not the loudest source, but it is of high tonal noise which is often highly unpleasant. The gear noise originates at gear mesh. Transmission Error acts as an excitation source and these vibrations pass through gears, shafts and bearings to the housing which vibrates to produce noise on surrounding air. As microgeometry optimization target to reduce the fundamental excitation source of the noise, it has been favored method to tackle gear whine noise, especially for manual transmission. However, practicality of microgeometry optimization for the planetary gear system has been still in question, because of complex system structure and interaction among multi mesh gear sets make it hard to predict and even harder to improve. In this paper, successful case of whine noise improvement by microgeometry is presented.
Technical Paper

Dynamic Absorbers for Modern Powertrains

2011-05-17
2011-01-1554
This paper describes the use of dynamic vibration absorbers in torque converters to reduce the torsional vibration levels of the vehicle drivetrain. The use of both tuned mass absorbers and centrifugal pendulum absorbers (CPA) are discussed. In the case of the tuned mass absorber, the absorber is tuned near the lugging limit of the torque converter clutch to provide maximum improvement in isolation at low speed where vibration levels generally are the highest. The CPA is tuned for the dominate firing order of the engine, thus tracking the engine excitation at all operating speeds. Vehicle measurements are presented for both absorber types compared to current state of the art torque converter isolator technology.
Technical Paper

Driveline Boom Interior Noise Prediction Based on Multi Body Simulation

2011-05-17
2011-01-1556
It is important to develop powertrain NVH characteristics with the goal of ultimately influencing/improving the in-vehicle NVH behavior since this is what matters to the end customer. One development tool called dB(VINS) based on a process called Vehicle Interior Noise Simulation (VINS) is used for determining interior vehicle noise based on powertrain level measurements (mount vibration and radiated noise) in combination with standardized vehicle transfer functions. Although this method is not intended to replace a complete transfer path analysis and does not take any vehicle specific sensitivity into account, it allows for powertrain-induced interior vehicle noise assessments without having an actual test vehicle available. Such a technique allows for vehicle centric powertrain NVH development right from an early vehicle development stage.
Technical Paper

Handling Performance of a Vehicle Equipped with an Actively Controlled Differential

2011-05-17
2011-01-1557
Vehicle handling is heavily influenced by the torque distribution to the driving wheels. This work presents a newly developed differential, designed to actively control the driving torque distribution to the wheels. The new device incorporates an electric machine, which can operate either as a motor or generator. A control unit monitors signals from various sources in the vehicle, such as steering angle, yaw acceleration and wheel rotational speed. Then, a control algorithm takes into account the steering angle rate and the vehicle speed in order to determine the suitable difference between output torque values. The handling improvement capabilities are evaluated by simulating in ADAMS/Car the driving behavior of a vehicle equipped with the new differential. The model that has been used to simulate vehicle handling is that of a Formula SAE type racing car.
Journal Article

Experimental Study of the Factors Affecting Transfer Case NVH Performance in 4-Lo Operation Mode

2011-05-17
2011-01-1558
In this paper, the results of the experimental study are presented to describe the impact of several gear design and manufacturing related factors on NVH performance of a transfer case operating in 4-Lo mode. The investigated gear design factors include lead crowning and profile crowning of the planet gears. The influence of manufacturing and assembly is investigated by varying carrier pinhole tangential position error and carrier pinhole tangential tilt error. The experimental DOE study is performed on chassis dynamometer by using actual vehicle. The strategically placed accelerometers and microphones are used for data acquisition. The results show that, among the gear design related factors, lead modification has larger influence on the NVH performance than profile modification. The study also shows how manufacturing errors influence NVH performance of the transfer case by causing lead misalignment of gears and unequal planet load sharing.
Journal Article

Full-Toroidal Traction Drive Variator Material and Fluid Durability

2011-04-12
2011-01-1424
Full-toroidal traction drives (IVT, TCVT & TVAD) have demonstrated a significant fuel economy, emissions and cost benefits across a diverse range of applications. However, increasing emphasis is being placed on power density and endurance limits, hence additional demands are being placed on the ability of the variator elements and traction fluid to withstand the heavily loaded rolling contact fatigue conditions within the variator. This paper describes the experimental work done to demonstrate the high temperature durability of traction fluid and variator disc and roller material. In addition, the latest fatigue endurance limit testing results are presented which provide further evidence of traction fluid ‘fill for life’
Technical Paper

ZF EcoLife - The latest Generation of Powershift Automatics for Transit Buses

2011-04-12
2011-01-1423
The megatrends "reduction of emissions" and "fuel consumption reduction" play a predominant role in the development of powertrains. For transit buses this implies both the reduction of emissions and pollutions of the internal combustion engine, and, on the other hand, a further reduction of noise and brake dust. Also very important is the reduction of both fuel consumption and CO₂ emissions. For all these targets the actual developments on the engine side have led to great improvements in the last decades, but what can be mentioned for the other components of the powertrain, especially looking for transmissions? First of all the relevant trends for transit buses have to be considered: A large increase of the torque of the combustion engines during the last years has a big impact on the development of transmissions for buses.
Technical Paper

Gen2 GF6 Transmission Hardware and Controls Updates

2011-04-12
2011-01-1428
In an effort to increase fuel economy and improve shift quality - the GF6 family of General Motors transmissions has been analyzed for potential enhancements. The focus of this analysis was to improve fuel economy, while increasing downshift responsiveness, and manual mode sport delays. This paper describes a variety of the hardware philosophy changes, and control methods which have contributed to the next generation of GM clutch-to-clutch 6-speed transmissions. These changes to hardware and controls have led to a composite fuel economy improvement of 4.5% with no changes to shift or torque-converter scheduling. In addition, the downshift responsiveness has been significantly improved to reduce delay times by approximately 50% while virtually eliminating the dependency on engine torque reductions - ultimately allowing for stacked downshifts to progress with minimal, if any, time between shifts. Additionally, “tap shift” delays have been significantly decreased to levels near 150 ms.
Technical Paper

New Drivetrain for Toyota's Flagship Lexus LFA Sports Car

2011-04-12
2011-01-1427
Toyota Motor Corporation has developed a new drivetrain for their flagship Lexus LFA sports car. Passionate driving experience was pursued at the forefront of development. Superior vehicle performance, handling, and responsiveness that seem to anticipate the driver's intentions are achieved. Special vehicle packaging and component placement are adopted in the LFA in order to realize such performance. The engine, clutch, and front counter gear are positioned at the front of the vehicle, and the transaxle at the rear. The engine and transaxle are connected by a rigid torque tube. The transaxle is an automated manual transmission equipped with an electrohydraulic actuator for controlling both the shift and clutch operations. This actuator enables accurate control of the transmission and extremely quick response to shift paddle operation by the driver. This paper describes a general outline of the drivetrain and each component that has significantly contributed to LFA product appeal.
X