Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Piston Clearance Optimization using Thermo-elasto Hydrodynamic Simulation to Reduce Piston Slap Excitation and Friction Loss

2012-06-13
2012-01-1530
The reduction of acoustic excitation due to piston slap as well as friction loss power and seizure are main issues when simulating the oil film lubricated piston - cylinder contacts of internal combustion engines. For a correct representation of the contact conditions between a piston skirt and a cylinder liner surface both the dynamics of the contacting flexible bodies, the shape of the contacting surfaces, the amount of available oil and the properties of the lubricant itself play important roles. Besides an appropriate representation of the hydrodynamic load carrying capacity using an averaged Reynolds equation with laminar flow conditions, the simulation has to use an appropriate asperity model to consider the mixed lubrication condition. The lubricant properties are in particular influenced by its thermal conditions.
Technical Paper

Performance Attributes for Root Cause Detection of Piston Induced Noise

2016-06-15
2016-01-1775
Abstract Modern powertrain noise investigation in the development process and during trouble shooting is a combination of experiment and simulation. In simulation in recent years main focus was set on model completeness, consideration of all excitation mechanisms and efficient and stabile numerical algorithms. By that the total response of the virtual powertrain is already comparable to the overall noise level of the real powertrain. Actual challenge is to trace back the overall response to its main excitation and noise generating mechanism as well as to their main driving parameters to support the engineer not only in reaching absolute values, but also to derive the root cause of a response or potential problem and to get hints on how to improve the specific behavior. Approaches by parameter sensitivity studies are time consuming and not unambiguous.
X