Refine Your Search

Topic

Author

Search Results

Technical Paper

Validation of Diesel Fuel Spray and Mixture Formation from Nozzle Internal Flow Calculation

2005-05-11
2005-01-2098
A series calculation methodology from the injector nozzle internal flow to the in-cylinder fuel spray and mixture formation in a diesel engine was developed. The present method was applied to a valve covered orifice (VCO) nozzle with the recent common rail injector system. The nozzle internal flow calculation using an Eulerian three-fluid model and a cavitation model was performed. The needle valve movement during the injection period was taken into account in this calculation. Inside the nozzle hole, cavitation appears at the nozzle hole inlet edge, and the cavitation region separates into two regions due to a secondary flow in the cross section, and it is distributed to the nozzle exit. Unsteady change of the secondary flow caused by needle movement affects the cavitation distribution in the nozzle hole, and the spread angle of the velocity vector at the nozzle exit.
Technical Paper

The Effect of Fuel Specifications and Different Aftertreatment Systems on Exhaust Gas Odour and Non-Regulated Emissions at Steady State and Dynamic Operation of DI-Diesel Engines

1999-10-25
1999-01-3559
Diesel exhaust gas contains low molecular aliphatic carbonyl compounds and strongly smelling organic acids, which are known to have an irritant influence on eyes, nose and mucous membranes. Thus, diesel exhaust aftertreatment has to be considered more critically than that of gasoline engines, with respect to the formation of undesired by-products. The results presented here have been carried out as research work sponsored by the German Research Association for Internal Combustion Engines (FVV). The main objective of the three year project was to evaluate the behaviour of current and future catalyst technology on the one hand (oxidation catalyst, CRT system, SCR process), and regulated and certain selected non-regulated exhaust gas emission components and exhaust gas odour on the other hand.
Technical Paper

The Effect of Different Air Path Based ATS Thermal Management Strategy on a Non- EGR Medium Duty Diesel Engine’s Performance and Emissions

2024-01-16
2024-26-0038
The major objective of this paper is to develop thermal management strategy targeting optimum performance of Selective Catalytic Reduction (SCR) catalyst in a Medium Duty Diesel Engine performing in BS6 emission cycles. In the current scenario, the Emissions Norms are becoming more stringent and with the introduction of Real Drive Emission Test (RDE) and WHTC test comprising of both cold and hot phase, there is a need to develop techniques and strategies which are quick to respond in real time to cope with emission limit especially NOx. SCR seems to be suitable solution in reducing NOx in real time. However, there are limitations to SCR operating conditions, the major being the dosing release conditions which defines the gas temperature at which DEF (Diesel Exhaust Fluid) can be injected as DEF injection at lower gas temperatures than dosing release will lead to Urea deposit formation and will significantly hamper the SCR performance.
Technical Paper

The Challenge of Precise Characterizing the Specific Large-Span Flows in Urea Dosing Systems for NOx Reduction

2008-04-14
2008-01-1028
The reduction of nitrous oxides in the exhaust gases of internal combustion engines using a urea water solution is gaining more and more importance. While maintaining the future exhaust gas emission regulations, like the Euro 6 for passenger cars and the Euro 5 for commercial vehicles, urea dosing allows the engine management to be modified to improve fuel economy as well. The system manufacturer Robert Bosch has started early to develop the necessary dosing systems for the urea water solution. More than 300.000 Units have been delivered in 2007 for heavy duty applications. Typical dosing quantities for those systems are in the range of 0.01 l/h for passenger car systems and up to 10 l/h for commercial vehicles. During the first years of development and application of urea dosing systems, instantaneous flow measuring devices were used, which were not operating fully satisfactory.
Technical Paper

TC GDI Engines at Very High Power Density — Irregular Combustion and Thermal Risk

2009-09-13
2009-24-0056
Gasoline direct injection and turbocharging enable the progress of clean and fuel efficient SI engines. Accessing potential efficiency benefits requires very high power density to be achieved across a broad rpm range. This imposes risks which in conventional engines are rarely met. However, at torque levels exceeding 25 bar BMEP, the thermal in-cylinder conditions together with chemical reactivity of any ignitable matter, require major efforts in combustion system development. The paper presents a methodology to identify and locate sporadic self ignition events and it demonstrates non contact surface temperature measurement techniques for in-cylinder and exhaust system components.
Technical Paper

Sound - Design for Motorcycles Influence of Different Parameters on the Sound

2006-11-13
2006-32-0084
Beside performance, handling and styling the sound characteristic of a motorcycle is a very important feature for the acceptance of the product by the customers and therefore the commercial success of a new product. Creating a special brand sound becomes more and more important to create a product that can be easily distinguished from competitor products and is therefore considered to be something special. On the other hand the legal limits in terms of pass - by noise allow for a very little margin for the creation of a special sound. During the product sound design phase the different perceptions of the rider wearing a helmet and pedestrians have to be considered. In passenger cars sound design has been known for a long time and the creation of a special sound for the driver inside the passenger compartment can be achieved with little influence on the exterior noise and therefore on the noise which is limited by legislation.
Technical Paper

Simulation of Exhaust Gas Aftertreatment Systems - Thermal Behavior During Different Operating Conditions

2008-04-14
2008-01-0865
The introduction of more stringent standards for engine emissions requires continuous improvement of exhaust gas aftertreatment systems. Modern systems require a combined design and application of different aftertreatment devices. Computer simulation helps to investigate the complexity of different system layouts. This study presents an overall aftertreatment modeling framework comprising dedicated models for pipes, oxidation catalysts, wall flow particulate filters and selective catalytic converters. The model equations of all components are discussed. The individual behavior of all components is compared to experimental data. With these well calibrated models a simulation study on a DOC-DPF-SCR exhaust system is performed. The impact of pipe wall insulation on the overall NOx conversion performance is investigated during four different engine operating conditions taken from a heavy-duty drive cycle.
Technical Paper

Scale-Resolving Simulations of the Flow in Intake Port Geometries

2016-04-05
2016-01-0589
A computational study of the flow in intake port geometries has been performed. Three different intake port geometries, namely two combined tangential and helical ports and one quiescent port were analyzed. Each of these cases was calculated for different valve lifts and the results were compared with available measurements. The focus of this paper is on the performance assessment of the variable resolution Partial-Averaged Navier-Stokes (PANS) method. Calculations have been also performed with the Reynolds-averaged Navier-Stokes (RANS) model, which is presently a state-of-the-art approach for this application in the industry. Besides the averaged integral values like a discharge coefficient and a swirl coefficient, the predicted velocity magnitude fields at the measured cross sections of the ports are compared due to available Particle Image Velocimetry (PIV) measurements.
Technical Paper

Overview of the European “Particulates” Project on the Characterization of Exhaust Particulate Emissions from Road Vehicles: Results for Heavy Duty Engines

2004-06-08
2004-01-1986
This paper presents an overview of the results on heavy duty engines collected in the “PARTICULATES” project, which aimed at the characterization of exhaust particle emissions from road vehicles. The same exhaust gas sampling and measurement system as employed for the measurements on light duty vehicles [1] was used. Measurements were made in three labs to evaluate a wide range of particulate properties with a range of heavy duty engines and fuels. The measured properties included particle number, with focus separately on nucleation mode and solid particles, particle active surface and total mass. The sample consisted of 10 engines, ranging from Euro-I to prototype Euro-V technologies. The same core diesel fuels were used as in the light duty programme, mainly differentiated with respect to their sulphur content. Additional fuels were tested by some partners to extend the knowledge base.
Technical Paper

OBD of De-NOx-Systems - Requirements for Software Development and Calibration for 2010 and Beyond

2008-04-14
2008-01-1322
Worldwide OBD legislation has and will be tightened drastically. In the US, OBD II for PC and the introduction of HD OBD for HD vehicles in 2010 will be the next steps. Further challenges have come up with the introduction of active exhaust gas aftertreatment components to meet the lower future emission standards, especially with the implementation of combined DPF-De-NOx-systems for PC and HD engines. Following such an increase in complexity, more comprehensive algorithms and software have to be developed to cope with the legislative requirements for exhaust gas aftertreatment devices. The calibration has to assure the proper functionality of OBD under all driving situations and ambient conditions. The increased complexity can only be mastered when new and efficient tools and methodologies are applied for both algorithm design and calibration. Consequently, OBD requirements have to be taken into account right from the start of engine development.
Technical Paper

OBD Algorithms: Model-based Development and Calibration

2007-10-30
2007-01-4222
The OBD II and EOBD legislation have significantly increased the number of system components that have to be monitored in order to avoid emissions degradation. Consequently, the algorithm design and the related calibration effort is becoming more and more challenging. Because of decreasing OBD thresholds, the monitoring strategy accuracy, which is tightly related with the components tolerances and the calibration quality, has to be improved. A model-based offline simulation of the monitoring strategies allows consideration of component and sensor tolerances as well as a first calibration optimization in the early development phase. AVL applied and improved a methodology that takes into account this information, which would require a big effort using testbed or vehicle measurements. In many cases a component influence analysis is possible before hardware is available for testbed measurements.
Technical Paper

Numerical Methods to Calculate Gear Transmission Noise

1997-05-20
971965
This report shows the methods, which AVL uses for the calculation of gear box noise. The analysis of the gear box structure (housing) is done using finite element method (FEM), thereby the natural frequencies are calculated as well as forced vibrations. As input for the FE calculation of the forced vibrations, the dynamic bearing forces of the shafts in the gear box or the dynamic tooth mesh are used. These forces are determined using the MBS (multi body system) software GTDYN, considering the torsional vibrations as well as axial and bending vibrations. Several examples of calculation results for the investigation of the gear dynamics are shown within the scope of this report.
Technical Paper

Numerical Investigation and Experimental Comparison of ECN Spray G at Flash Boiling Conditions

2020-04-14
2020-01-0827
Fuel injection is a key process influencing the performance of Gasoline Direct Injection (GDI) Engines. Injecting fuel at elevated temperature can initiate flash boiling which can lead to faster breakup, reduced penetration, and increased spray-cone angle. Thus, it impacts engine efficiency in terms of combustion quality, CO2, NOx and soot emission levels. This research deals with modelling of flash boiling processes occurring in gasoline fuel injectors. The flashing mass transfer rate is modelled by the advanced Hertz-Knudsen model considering the deviation from the thermodynamic-equilibrium conditions. The effect of nucleation-site density and its variation with degree of superheat is studied. The model is validated against benchmark test cases and a substantiated comparison with experiment is achieved.
Technical Paper

Modeling of Engine Warm-Up with Integration of Vehicle and Engine Cycle Simulation

2001-05-14
2001-01-1697
The incorporation of a detailed engine process calculation that takes into account thermal behavior of the engine and exhaust system is essential for a realistic simulation of transient vehicle operation. This is the only possible way to have a precise preliminary calculation of fuel consumption and emissions. Therefore, a comprehensive thermal network of the engine based on the lumped capacity method has been developed. The model allows the computation of component temperatures in steady state operation as well as in transient engine studies, e.g. investigations of engine warm-up. The model is integrated in a co-simulation environment consisting of a detailed vehicle and engine cycle simulation code. The paper describes the procedure of the co-simulation and presents several examples of warm-up simulations.
Technical Paper

Methodology and Tools to Predict GDI Injector Tip Wetting as Predecessor of Tip Sooting

2018-04-03
2018-01-0286
With upcoming emission regulations particle emissions for GDI engines are challenging engine and injector developers. Despite the introduction of GPFs, engine-out emission should be optimized to avoid extra cost and exhaust backpressure. Engine tests with a state of the art Miller GDI engine showed up to 200% increased particle emissions over the test duration due to injector deposit related diffusion flames. No spray altering deposits have been found inside the injector nozzle. To optimize this tip sooting behavior a tool chain is presented which involves injector multiphase simulations, a spray simulation coupled with a wallfilm model and testing. First the flow inside the injector is analyzed based on a 3D-XRay model. The next step is a Lagrangian spray simulation coupled with a wallfilm module which is used to simulate the fuel impingement on the injector tip and counter-bores.
Technical Paper

Method for Root Bending Fatigue Life Prediction in Differential Gears and Validation with Hardware Tests

2024-04-09
2024-01-2249
An advanced multi-layer material model has been developed to simulate the complex behavior in case-carburized gears where hardness dependent strength and elastic-plastic behavior is characterized. Also, an advanced fatigue model has been calibrated to material fatigue tests over a wide range of conditions and implemented in FEMFAT software for root bending fatigue life prediction in differential gears. An FEA model of a differential is setup to simulate the rolling contact and transient stresses occurring within the differential gears. Gear root bending fatigue life is predicted using the calculated stresses and the FEMFAT fatigue model. A specialized rig test is set up and used to measure the fatigue life of the differential over a range of load conditions. Root bending fatigue life predictions are shown to correlate very well with the measured fatigue life in the rig test.
Technical Paper

Linear Acoustic Exhaust System Simulation Using Source Data from Non Linear Simulation

2005-05-16
2005-01-2358
Both linear (frequency domain) and non-linear (time domain) prediction codes are used for the simulation of duct acoustics in exhaust systems. Each approach has its own set of advantages and disadvantages. One disadvantage of the linear method is that information about the engine as an acoustic source is needed in order to calculate the insertion loss of mufflers or the level of radiated sound. The source model used in the low frequency plane wave range is the linear time invariant 1-port model. This source characterization data is usually obtained from experimental tests where multi-load methods and especially the two-load method are most commonly used. These measurements are time consuming and expensive. However, this data can also be extracted from an existing 1-D non-linear CFD code describing the engine gas exchange process.
Technical Paper

Lightweight design~A challenge for modern passenger car engines

2000-06-12
2000-05-0051
The application of lightweight materials for new crankcase concepts implies comprehensive design considerations to achieve weight reductions as close as possible to the potential of the selected material. A specific approach for inline and V-engine crankcase concepts is discussed in detail. Engine weight reduction can also be achieved through "Downsizing." Modern technologies applied to existing engine concepts increase the power-weight ratio, the engine''s capability and therefore its marketing value. The use of lightweight materials for diesel and gasoline engines within one engine family allows a combined production and a less costly machining. Aluminum and magnesium alloys are, due to their high relative strength (tensional strength and e-modulus divided by their material densities), suitable for weight-reduced components which need to be designed for a specific target strength.
Technical Paper

Intelligent Simplification-Ways Towards Improved Fuel Economy

2002-03-04
2002-01-0236
A broad variety of new technologies for improving fuel economy is currently under development or investigation. The general statement is that always a compromise between fuel economy benefit and engine oncost has to be found. This paper describes a new way for improving fuel economy based on existing technologies used in a refined way. It is shown that with very simple and robust measures on the intake and exhaust ports and on the valve train mechanism 2 valve and 4 valve engines can show a significant improvement in fuel consumption without having a great cost penalty for production. The basic system consists of a single cam phaser and a special port arrangement on a 2 valve engine with a single camshaft operated at stoichiometric air/fuel ratio utilizing internal EGR and a reverse “Miller-Cycle”. Variable charge motion is generated using a shared flow through the intake and the exhaust port by varying cam timing.
Technical Paper

Integrated 1D to 3D Simulation Workflow of Exhaust Aftertreatment Devices

2004-03-08
2004-01-1132
Future limits on emissions for both gasoline and Diesel engines require adequate and advanced systems for the after-treatment of the exhaust gas. Computer models as a complementary tool to experimental investigations are an indispensable part to design reliable after-treatment devices such as catalytic converters and Diesel particulate filters including their influence on the power-train. Therefore, the objective of this contribution is to present an integrated 1D to 3D simulation workflow of of catalytic converters and Diesel particulate filters. The novelty of this approach is that parameters or set of parameters, obtained by a fast and efficient 1D-gas exchange and cycle simulation code for power-trains (AVL (2002a)), are readily transferable onto a 3D general purpose simulation code (AVL (2002b)). Thus, detailed aspects such as spatial distribution of temperatures or heat losses are investigated with only a single effort to estimate parameters.
X