Refine Your Search

Topic

Author

Search Results

Technical Paper

Ways to Meet Future Emission Standards with Diesel Engine Powered Sport Utility Vehicles (SUV)

2000-03-06
2000-01-0181
The paper reports on the outcome of a still on-going joint-research project with the objective of establishing a demonstrator high speed direct injection (HSDI) diesel engine in a Sport Utility Vehicle (SUV) which allows to exploit the effectiveness of new engine and aftertreatment technologies for reducing exhaust emissions to future levels of US/EPA Tier 2 and Euro 4. This objective should be accomplished in three major steps: (1) reduce NOx by advanced engine technologies (cooled EGR, flexible high pressure common rail fuel injection system, adapted combustion system), (2) reduce particulates by the Continuous Regeneration Trap (CRT), and (3) reduce NOx further by a DeNOx aftertreatment technology. The current paper presents engine and vehicle results on step (1) and (2), and gives an outlook to step (3).
Technical Paper

VVT+Port Deactivation Application on a Small Displacement SI 4 Cylinder 16V Engine: An Effective Way to Reduce Vehicle Fuel Consumption

2003-03-03
2003-01-0020
During recent years several VVT devices have been developed, in order to improve either peak power and low end torque, or part load fuel consumption of SI engines. This paper describes an experimental activity, concerning the integration of a continuously variable cam phaser (CVCP), together with an intake port deactivation device, on a small 4 cylinder 16V engine. The target was to achieve significantly lower fuel consumption under normal driving conditions, compared to a standard MPFI application. A single hydraulic cam phaser is used to shift both the intake and the exhaust cams to retarded positions, at constant overlap. Thus, high EGR rates in the combustion chamber and late intake valve closure (“reverse Miller cycle”) are combined, in order to reduce pumping losses at part load.
Technical Paper

V6-SUV Engine Sound Development

2009-05-19
2009-01-2177
This paper describes the development and achievement of a target engine sound for a V6 SUV in consideration of the sound quality preferences of customers in the U.S. First, a simple definition for engine sound under acceleration was found using order arrangement, frequency balance, and linearity. These elements are the product of commonly used characteristics in conventional development and can be applied simply when setting component targets. The development focused on order arrangement as the most important of these elements, and sounds with and without integer orders were selected as target candidates. Next, subjective auditory evaluations were performed in the U.S. using digitally processed sounds and an evaluation panel comprising roughly 40 subjects. The target sound was determined after classifying the results of this evaluation using cluster analysis.
Technical Paper

Using Simulation and Optimization Tools to Decide Engine Design Concepts

2000-03-06
2000-01-1267
To meet the future demands on internal combustion engines regarding efficiency emissions and durability all design parameters must be optimized together. As a result of progress in material engineering fuel injection technology turbo charging technology exhaust gas after treatment there arise a multiplicity of possible parameters, such as: design parameters (compression ratio, dimensioning depending on peak firing pressure and mean effective pressure), injection system (rate shaping, split injection, injection pressure, hole diameter), air management (turbo charging with or without VTG, EGR rate) combustion optimization (timing, air access ratio). The interaction of all these parameters can not be over-looked without simulation and optimization tools. This is valid for the concept layout, the optimization and the application process later on.
Technical Paper

Two-Cylinder Gasoline Engine Concept for Highly Integrated Range Extender and Hybrid Powertrain Applications

2010-09-28
2010-32-0130
The demand for improved fuel economy and the request for Zero Emission within cities require complex powertrains with an increasing level of electrification already in a short-termed timeframe until 2025. According to general expectations the demand for Mild-Hybrid powertrains will increase significantly within a broad range of implementation through all vehicle classes as well as on electric vehicles with integrated Range Extender (RE) mainly for use in urban areas. Whereas Mild Hybrid Vehicles basically use downsized combustion engines at current technology level, vehicles with a high level of powertrain electrification allow significantly different internal combustion engine (ICE) concepts. At AVL, various engine concepts have been investigated and evaluated with respect to the key criteria for a Range Extender application. A Wankel rotary engine concept as well as an inline 2 cylinder gasoline engine turned out to be most promising.
Technical Paper

Trends of Future Emission Legislation and its Measurement Requirements

2004-11-16
2004-01-3291
People have been altering the atmosphere on a small scale ever since they learned to make fire. Today's air pollution can influence ecosystems and transform climate worldwide. Motorized transport has become essential, today about 1000 million vehicles are on the world's roads [1]. Vehicle registrations are still sharply upward, where the future growth is most rapid in Asia and Latin America. Over the past, global pollution concerns have increased and air quality targets have been established. Also the reduction of green house gases like CO2 (Kyoto protocol) is considered. Aligned with such air quality targets automotive emission limits have been implemented. The future emission limits will require advanced engine technologies, but will also require adjustments to the measurement technologies. Furthermore new trends in the emission legislation will increase test requirements to represent the real world conditions in a more realistic way.
Technical Paper

Tool Based Calibration with the OBDmanager

2010-04-12
2010-01-0249
At the moment the documentation of failure inhibition matrices and the fault path management for different controller types and different vehicle projects are mainly maintained manually in individual Excel tables. This is not only time consuming but also gives a high potential for fault liability. In addition there is also no guarantee that the calibration of these failure inhibition matrices and its fault path really works. Conflicting aims between costs, time and fault liability require a new approach for the calibration, documentation and testing of failure inhibition matrices and the complete Diagnostic System Management (DSM) calibration. The standardization and harmonization of the Diagnostic System Management calibration for different calibration projects and derivates is the first step to reduce time and costs. Creating a master calibration for the conjoint fault paths and labels provides a significant reduction of efforts.
Journal Article

Three-Way Catalyst Light-off During the NEDC Test Cycle: Fully Coupled 0D/1D Simulation of Gasoline Combustion, Pollutant Formation and Aftertreatment Systems

2008-06-23
2008-01-1755
The introduction of more stringent standards for engine emissions requires a steady development of engine control strategies in combination with efforts to optimize in-cylinder combustion and exhaust gas aftertreatment. With the goal of optimizing the overall emission performance this study presents the comprehensive simulation approach of a virtual vehicle model. A well established 1D gas dynamics and engine simulation model is extended by four key features. These are models for combustion and pollutant production in the cylinder, a model for the conversion of pollutants in a catalyst and a model for the effect of manifold wall wetting and fuel evaporation. The general species transport feature is linking these model together as it allows to transport an arbitrary number of chemical species in the entire system. Finally this highly detailed engine model is integrated into a vehicle model.
Technical Paper

The Performance of a Heavy Duty Diesel Engine with a Production Feasible DME Injection System

2001-09-24
2001-01-3629
Over the last few years there has been much interest in DiMethyl Ether (DME) as an alternative fuel for diesel cycle engines. It combines the advantages of a high cetane number with soot free combustion, which makes it eminently suitable for compression ignition engines. However, due to the fact that it is a gas under ambient conditions, it requires special fuel handling and a specially designed fuel injection system, which until recently, was not available. The use of the digital hydraulic operating system (DHOS), combined with a fuel handling system designed to cope with the properties of DME, enables the fuel to be safely and conveniently handled, In addition, the flexibility of the injection system enables injection pressures to be chosen according to the needs of the combustion.
Technical Paper

The Influence of Inlet Port Design on the In-Cylinder Charge Mixing

1989-02-01
890842
A detailed investigation of the influence of intake port design on the in-cylinder flow structure during the intake and compression strokes, the mixing of the residual gas and a non-premixed intake charge, and the extent and pattern of charge inhomogenity near the time of combustion is described. The engine geometry is typical of the current lean-burn design and the study includes comparison of a helical (swirl) port and an idealized direct (no swirl) port designs. The results show marked dependence of the in-cylinder charge mixing characteristics on the intake port design. It is found that combinations of intake port design and manifold fuel injection timing produce favourably-stratified or irregularly-mixed charge distributions at the time of spark ignition. The consequences with respect to combustion characteristics are pointed out.
Technical Paper

The Effect of Fuel Specifications and Different Aftertreatment Systems on Exhaust Gas Odour and Non-Regulated Emissions at Steady State and Dynamic Operation of DI-Diesel Engines

1999-10-25
1999-01-3559
Diesel exhaust gas contains low molecular aliphatic carbonyl compounds and strongly smelling organic acids, which are known to have an irritant influence on eyes, nose and mucous membranes. Thus, diesel exhaust aftertreatment has to be considered more critically than that of gasoline engines, with respect to the formation of undesired by-products. The results presented here have been carried out as research work sponsored by the German Research Association for Internal Combustion Engines (FVV). The main objective of the three year project was to evaluate the behaviour of current and future catalyst technology on the one hand (oxidation catalyst, CRT system, SCR process), and regulated and certain selected non-regulated exhaust gas emission components and exhaust gas odour on the other hand.
Technical Paper

The Challenge of Precise Characterizing the Specific Large-Span Flows in Urea Dosing Systems for NOx Reduction

2008-04-14
2008-01-1028
The reduction of nitrous oxides in the exhaust gases of internal combustion engines using a urea water solution is gaining more and more importance. While maintaining the future exhaust gas emission regulations, like the Euro 6 for passenger cars and the Euro 5 for commercial vehicles, urea dosing allows the engine management to be modified to improve fuel economy as well. The system manufacturer Robert Bosch has started early to develop the necessary dosing systems for the urea water solution. More than 300.000 Units have been delivered in 2007 for heavy duty applications. Typical dosing quantities for those systems are in the range of 0.01 l/h for passenger car systems and up to 10 l/h for commercial vehicles. During the first years of development and application of urea dosing systems, instantaneous flow measuring devices were used, which were not operating fully satisfactory.
Technical Paper

The Application of a New Software Tool for Separating Engine Combustion and Mechanical Noise Excitation

2007-05-15
2007-01-2376
The optimization of engine NVH is still an important aspect for vehicle interior and exterior noise radiation. To optimize the engine noise / vibration contribution to the vehicle, a complete understanding of the excitation mechanism, the vibration transfer in the engine structure and the radiation efficiency of the individual engine components is required. Concerning the excitation within the engine, a very efficient analysis methodology for the combustion- and mechanical excitation within gasoline and diesel engines has been developed. Out of this methodology a software tool has been designed for a fast, efficient and detailed evaluation of the combustion- and mechanical excitation content of total engine noise. Recently this software tool has been successfully applied in engine NVH optimization work for defining the best optimization strategies for engine NVH reduction and noise quality improvement especially with respect to combustion excitation.
Technical Paper

Technology Features and Development Methods for Spark Ignited Powertrain to Meet 2020 CO2 Emission Targets

2013-10-07
2013-36-0438
For achieving the forthcoming CO2 emission targets of 95g/km by 2020 and for the years beyond, comprehensive activities for powertrain technology as well as development methodology has to be utilized. It will by far not be enough to add a few single technology features to achieve the desired result. More and more the success will result from comprehensive combining of synergetic utilization of complementary effects. This will be the powertrain perfectly matched to the vehicle, including the energy source, and all together integrated by means of advanced development tools and methodology.
Technical Paper

TC GDI Engines at Very High Power Density — Irregular Combustion and Thermal Risk

2009-09-13
2009-24-0056
Gasoline direct injection and turbocharging enable the progress of clean and fuel efficient SI engines. Accessing potential efficiency benefits requires very high power density to be achieved across a broad rpm range. This imposes risks which in conventional engines are rarely met. However, at torque levels exceeding 25 bar BMEP, the thermal in-cylinder conditions together with chemical reactivity of any ignitable matter, require major efforts in combustion system development. The paper presents a methodology to identify and locate sporadic self ignition events and it demonstrates non contact surface temperature measurement techniques for in-cylinder and exhaust system components.
Technical Paper

Subjective Assessment of Roughness as a Basis for Objective Vehicle Interior Noise Quality Evaluation

1999-05-17
1999-01-1850
This paper focuses on psychoacoustical experiments for the assessment of roughness by using vehicle interior noise. The experimental design is carried out carefully to derive reliable data for further analysis with objective parameters. Apart from the acoustical properties of the recording/playback system the different meanings of the word roughness are taken into account, because each person has its own interpretation of ‘roughness’ differing between the phenomenons of roughness, r-roughness, rumble, harshness, fluctuation strength, etc.. An important preparation for psychoacoustical experiments is a clear definition of the sound attribute under investigation by using typical examples. Furthermore, accidental influences of other psychoacoustical parameters like the influence of loudness have to be avoided.
Technical Paper

Single Cylinder 25kW Range Extender as Alternative to a Rotary Engine Maintaining High Compactness and NVH Performance

2013-10-15
2013-32-9132
Due to the restricted capacity of today's battery systems and therefore limited operating range of electric vehicles (EV), several solutions for recharging the energy storage during driving already have been published and still are the subject of extensive development programs. One example is the Range Extender (RE), which is a combination of an internal combustion engine (ICE) with a generator unit, which serves the purpose of a power back-up in case of a battery with low state of charge (SOC), without any direct connection to the drivetrain. For this kind of RE-application, different boundary conditions are very important. Especially in EVs topics like packaging space and NVH behavior play a main role. To fulfill these important characteristics, AVL has developed a Wankel-RE unit in which the generator is driven directly from the eccentric shaft of the rotary-piston ICE.
Technical Paper

Shorter Engine Development Periods through Modern Fuel Consumption Measuring Technique

2004-11-16
2004-01-3388
New combustion principle concepts combined with enormous application efforts as well as rapid development of gasoline- and diesel injection systems, make high demands on the fuel consumption measuring system. Because of the high degree of automated test bed applications, challenging requirements to reliability and plausibility of measuring results at simultaneously shorter measuring times arise. The following paper describes a new fuel consumption measuring system by presenting specific application examples and shows how efficient utilisation of resources, regarding manpower and test bed capacity, can be reached and how a significant timesaving can be realised.
Technical Paper

SOUND ENGINEERING FOR ELECTRIC AND HYBRID VEHICLES: Procedures to create appropriate sound for electric and hybrid vehicles

2011-05-17
2011-39-7228
Importance of electric and hybrid vehicles steeply increased in the last few years. Especially topics like CO2 reduction and local zero emissions are forcing companies to focus on electrification. While main technical problems seem to be solvable from a technical point of view, commercial and security topics are gaining more importance. For full electric vehicles the driving range is limited by the capacity of available batteries. As those batteries are one of the most heavy and expensive parts of these vehicles, reduction of battery size is a big topic in vehicle development. To increase a vehicle's driving range without increasing battery size some range extending backup system has to be available. Such a Range Extender should be a small system combining combustion engine and electric generator to produce the required electricity for charging the batteries whenever required.
Technical Paper

SI Engine Combustion and Knock Modelling Using Detailed Fuel Surrogate Models and Tabulated Chemistry

2019-04-02
2019-01-0205
In the context of today’s and future legislative requirements for NOx and soot particle emissions as well as today’s market trends for further efficiency gains in gasoline engines, computational fluid dynamics (CFD) models need to further improve their intrinsic predictive capability to fulfill OEM needs towards the future. Improving fuel chemistry modelling, knock predictions and the modelling of the interaction between the chemistry and turbulent flow are three key challenges to improve the predictivity of CFD simulations of Spark-Ignited (SI) engines. The Flamelet Generated Manifold (FGM) combustion modelling approach addresses these challenges. By using chemistry pre-tabulation technologies, today’s most detailed fuel chemistry models can be included in the CFD simulation. This allows a much more refined description of auto-ignition delays for knock as well as radical concentrations which feed into emission models, at comparable or even reduced overall CFD run-time.
X