Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

The Single Cylinder OM441LA

This paper will describe the design criteria for a single cylinder version of the Daimler-Chrysler OM441LA engine, which is currently used in multicylinder form as a key test in the ACEA A4 and A5 Oil Sequences. A test procedure has been developed for the single cylinder which provides results correlating with its multicylinder counterpart. The historical development of the procedure, correlation data, and economic benefits of use will be presented.
Journal Article

Sulfur Poisoning of a NOx Storage Catalyst - A Comprehensive Modelling Approach

This paper describes the development of a 0-D-sulfur poisoning model for a NOx storage catalyst (NSC). The model was developed and calibrated using findings and data obtained from a passenger car diesel engine used on testbed. Based on an empirical approach, the developed model is able to predict not only the lower sulfur adsorption with increasing temperature and therefore the higher SOx (SO2 and SO3) slip after NSC, but also the sulfur saturation with increasing sulfur loading, resulting in a decrease of the sulfur adsorption rate with ongoing sulfation. Furthermore, the 0-D sulfur poisoning model was integrated into an existing 1-D NOx storage catalyst kinetic model. The combination of the two models results in an “EAS Model” (exhaust aftertreatment system) able to predict the deterioration of NOx-storage in a NSC with increasing sulfation level, exhibiting higher NOx-emissions after the NSC once it is poisoned.
Technical Paper

Research Results and Progress in LeaNOx II -A Co-operation for Lean NOx Abatement

In a consortium of European industrial partners and research institutes, a combination of industrial development and scientific research was organised. The objective was to improve the catalytic NOx conversion for lean burn cars and heavy-duty trucks, taking into account boundary conditions for the fuel consumption. The project lasted for three years. During this period parallel research was conducted in research areas ranging from basic research based on a theoretical approach to full scale emission system development. NOx storage catalysts became a central part of the project. Catalysts were evaluated with respect to resistance towards sulphur poisoning. It was concluded that very low sulphur fuel is a necessity for efficient use of NOx trap technology. Additionally, attempts were made to develop methods for reactivating poisoned catalysts. Methods for short distance mixing were developed for the addition of reducing agent.
Technical Paper

Design Of SI Engines In Regard To Volume Production Beyond Year 2000

The principal engine used in passenger cars is, and in the foreseeable future will be, the SI Engine. This paper summarizes AVL's experience in developing SI Engines for these vehicles. Special attention is given to the new targets of SI Engine development and the resulting design strategies during the concept phase of new engine families. The new modular concept of engine families includes a broad range of different engine designs like three to five cylinder inline and six to ten cylinder V-block engines, direct injection or fully variable valve actuation. It is shown that the design of central engine components, for example, that of the cylinder head, can be adapted for the different SI valve-train concepts by simply switching specific modular components.
Technical Paper

Cylinder- and Cycle Resolved Particle Formation Evaluation to Support GDI Engine Development for Euro 6 Targets

Combustion of premixed stoichiometric charge is free of soot particle formation. Consequently, the development of direct injection (DI) spark ignition (SI) engines aims at providing premixed charge to avoid or minimize soot formation in order to meet particle emissions targets. Engine development methods not only need precise engine-out particle measurement instrumentation but also sensors and measurement techniques which enable identification of in-cylinder soot formation sources under all relevant engine test conditions. Such identification is made possible by recording flame radiation signals and with analysis of such signals for premixed and diffusion flame signatures. This paper presents measurement techniques and analysis methods under normal engine and vehicle test procedures to minimize sooting combustion modes in transient engine operation.
Technical Paper

Automated Model-Based Calibration for Drivability Using a Virtual Engine Test Cell

Increasing powertrain complexity and the growing number of vehicle variants are putting a strain on current calibration development processes. This is particularly challenging for vehicle drivability calibration, which is traditionally completed late in the development cycle, only after mature vehicle hardware is available. Model-based calibration enables a shift in development tasks from the real world to the virtual world, allowing for increased system robustness while reducing development costs and time. A unique approach for drivability calibration was developed by incorporating drivability analysis software with online optimization software into a virtual engine test cell environment. Real-time, physics-based engine and vehicle simulation models were coupled with real engine controller hardware and software to execute automated drivability calibration within this environment.