Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

The Automated NC Mini-Driller

1999-10-06
1999-01-3436
The introduction of a new derivative to an existing aircraft model poses many decisions regarding old versus new. In the case of the introduction of the extended range 767 (the 767-400ER), an entirely new wing design prompted the examination of the then current assembly processes and tooling. The hesitation to build new drill templates for use in the traditional method of second stage wing spar assembly inspired Tool Engineering Management to request the investigation of a low cost automated drilling apparatus. As a result, the Boeing Automated Tools Group and Advanced Integration Technology, Inc. (AIT) developed and implemented mobile numerically controlled mini-drilling machines for post-ASAT I assembly-drilling operations.
Technical Paper

Gaugeless Tooling

1998-09-15
982147
At The Boeing Company, the advent of a Determinant Assembly (DA) program and the subsequent production of accurate fuselage subpanels created a need to be able to position subpanels accurately and repeatably during fuselage assembly. The tool engineering organization of The Boeing Company and Advanced Integration Technology, Inc. (AIT) as the prime contractor, are developing and installing automated positioning and alignment systems throughout major 747 fuselage assembly areas which enable DA techniques. The benefits of this assembly approach and this automated precision tooling are flexibility, assembly accuracy, ease of assembly and associated speed, reduced downtime for tool maintenance, and improved shop-floor ergonomics.
Technical Paper

An Investigation into the Use of Small, Flexible, Machine Tools to Support the Lean Manufacturing Environment

2001-09-10
2001-01-2566
Drilling fastener holes in large assemblies is traditionally accomplished through the use of large machine tools in order to obtain the accuracies required for the assembled part. Given recent advances of machine design and machine controller compensation, the accuracy of the motion platform can be corrected if the machine is repeatable. This coupled with the use of a vision system or touch probe to compensate for assembly variations, permit the use of smaller, more portable drilling systems. These smaller, more portable machine tools allow for lean manufacturing techniques to be incorporated into build processes, utilize less floor space, and in many cases are less costly than larger, permanent machine tools. This paper examines the feasibility of utilizing a small 5-axis, portable, drilling system for drilling the side panel skins on the F/A-18 E/F forward fuselage.
X