Refine Your Search

Topic

Author

Search Results

Technical Paper

Transient Turbine Engine Modeling and Real-Time System Integration Prototyping

2006-11-07
2006-01-3040
Aircraft power demands continue to increase with the increase in electrical subsystems. These subsystems directly affect the behavior of the power and propulsion systems and can no longer be neglected or assumed linear in system analyses. The complex models designed to integrate new capabilities have a high computational cost. This paper investigates the possibility of using a hardware-in-the-loop (HIL) analysis with real time integration. A representative electrical power system is removed from a turbine engine model simulation and replaced with the appropriate hardware attached to a 350 horsepower drive stand. In order to update the model to proper operating conditions, variables are passed between the hardware and the computer model. Using this method, a significant reduction in runtime is seen, and the turbine engine model is usable in a real time environment. Scaling is also investigated for simulations to be performed that exceed the operating parameters of the drive stand.
Technical Paper

Status, Vision, and Challenges of an Intelligent Distributed Engine Control Architecture

2007-09-17
2007-01-3859
A Distributed Engine Control Working Group (DECWG) consisting of the Department of Defense (DoD), the National Aeronautics and Space Administration (NASA)- Glenn Research Center (GRC) and industry has been formed to examine the current and future requirements of propulsion engine systems. The scope of this study will include an assessment of the paradigm shift from centralized engine control architecture to an architecture based on distributed control utilizing open system standards. Included will be a description of the work begun in the 1990's, which continues today, followed by the identification of the remaining technical challenges which present barriers to on-engine distributed control.
Technical Paper

Solid Electrolytes for Aerospace Lithium Rechargeable Batteries

1999-04-06
1999-01-1404
Lithium ion conductivity of a lithium compound is known to be influenced by an inert, non-lithium ion conductor additive. This paper reports an investigation of the effects of boron nitride (BN) addition to the conductivity of lithium iodide (Lil). The Lil:BN stoichiometry and heat treatment parameters (temperature and time) have been used as variables. It will be shown that lithium conductivity is strongly dependent upon heat treatment parameters. The activation energy for lithium ion transport also decreases with the addition of BN. Further analysis of activation energy data suggests that lithium ion motion takes place through interfacial regions of Lil and BN phases.
Technical Paper

Rechargeable Lithium-Ion Based Batteries and Thermal Management for Airborne High Energy Electric Lasers

2006-11-07
2006-01-3083
Advances in the past decade of the energy and power densities of lithium-ion based batteries for hybrid electric vehicles and various consumer applications have been substantial. Rechargeable high rate lithium-ion batteries are now exceeding 6 kW/kg for short discharge times (<15 seconds). Rechargeable lithium-ion polymer batteries, for applications such as remote-control aircraft, are achieving simultaneously high energy density and high power density (>160 Whr/kg at >1.0 kW/kg). Some preliminary test data on a rechargeable lithium-ion polymer battery is presented. The use of high rate rechargeable lithium-ion batteries as a function of onboard power, electric laser power level, laser duty cycle, and total mission time is presented. A number of thermal management system configurations were examined to determine system level weight impacts. Lightweight configurations would need a regenerative thermal energy storage subsystem.
Journal Article

Measurement of Loss Pathways in Small, Two-Stroke Internal-Combustion Engines

2017-03-14
2017-01-9276
The rapid expansion of the market for remotely piloted aircraft (RPA) includes a particular interest in 10-25 kg vehicles for monitoring, surveillance, and reconnaissance. Power-plant options for these aircraft are often 10-100 cm3 internal combustion engines. Both power and fuel conversion efficiency decrease with increasing rapidity in the aforementioned size range. Fuel conversion efficiency decreases from ∼30% for conventional-scale engines (>100 cm3 displacement) to <5% for micro glow-fuel engines (<10 cm3 displacement), while brake mean effective pressure decreases from >10 bar (>100 cm3) to <4 bar (<10 cm3). Based on research documented in the literature, the losses responsible for the increase in the rate of decreasing performance cannot be clearly defined. Energy balances consisting of five pathways were experimentally determined on two engines that are representative of Group-2 RPA propulsion systems and compared to those in the literature for larger and smaller engines.
Journal Article

Mapping of Fuel Anti-Knock Requirements for a Small Remotely Piloted Aircraft Engine

2016-11-08
2016-32-0045
Small remotely piloted aircraft (10-25 kg) powered by internal combustion engines typically operate on motor gasoline, which has an anti-knock index (AKI) of >80. To comply with the single-battlefield-fuel initiative in DoD Directive 4140.25, interest has been increasing in converting the 1-10 kW power plants in the aforementioned size class to run on lower AKI fuels such as diesel and JP-8, which have AKIs of ~20. It has been speculated that the higher losses (short-circuiting, incomplete combustion, heat transfer) that cause these engines to have lower efficiencies than their conventional-scale counterparts may also relax the fuel-AKI requirements of the engines. To investigate that idea, the fuel-AKI requirement of a 3W-55i engine was mapped and compared to that of the engine on the manufacturer-recommended 98 octane number (ON) fuel.
Technical Paper

Low Speed Wind Tunnel Testing of a Laser Propelled Vehicle

1999-10-19
1999-01-5577
An investigation was conducted to determine the low speed aerodynamic characteristics of a 9-in. diameter laser Lightcraft. The vehicle rotational velocity and deflection angle were varied to determine the effects on the Lightcraft’s aerodynamic performance. For the case of zero deflection angle, it was observed that the rotational velocity has no effect on the aerodynamic coefficients, with the drag coefficient remaining constant at 0.51. However, the aerodynamic center appeared to move aft when the model was rotated at higher velocities. For a yaw angle of 25° the lift and drag coefficients remained constant at 0.0 and 0.60, respectively, while the effects of rotation manifested themselves in the side force coefficient.
Technical Paper

Lithium-Ion Performance Testing and AC Impedance Characterization

1999-08-02
1999-01-2591
The performance and life of lithium-ion batteries is highly dependent on factors such as temperature, charge/ discharge rate, depth-of-discharge (DOD), charge cut-off voltage, and battery design. The purpose of this on-going investigation is to characterize the state-of-the-art in lithium-ion battery performance and life as a function of some of these factors. Cycle life data on 18650 cells as well as a four cell series connected 20 Ahr lithium-ion battery (16.4 volt) is presented. External cell temperatures as a function of discharge rate and location for 20 Ahr lithium-ion cell are given. Preliminary ac impedance results for the 20 Ahr cell are also given.
Technical Paper

Investigations of the Performance of Ejection Seat Cushions for Safety and Comfort

2005-10-03
2005-01-3263
Two series of tests were conducted to investigate the performance of ejection seat cushions for safety and comfort, respectively. In the safety study, seven operational and prototype cushions were tested on the vertical deceleration tower, where the cushions were placed between the seat pan and the occupant (a 50th percentile Hybrid III manikin) and subjected to +Gz impact at 8, 10, and 12 g, respectively. In the comfort investigation, twenty volunteer subjects (12 females and 8 males) with a range of anthropometry were tested on four operational and prototype cushions over eight-hour durations. The safety performance of a cushion is evaluated by the impact transmissibility from the carriage acceleration to the peak lumbar load, whereas the sitting comfort performance is assessed in terms of the peak contact pressure and subjective survey data.
Technical Paper

Integrated Hardware-in-the-Loop Simulation of a Complex Turbine Engine and Power System

2006-11-07
2006-01-3035
The interdependency between propulsion, power, and thermal subsystems on military aircraft such as the F-35 Joint Strike Fighter (JSF) and F-22 Raptor continues to increase as advanced war-fighting capabilities including solid-state radars, electronic attack, electric actuation, and Directed Energy Weaponry (DEW) expand to meet Air Force needs. Novel analysis and testing methodologies are required to predict these interdependencies and address adverse interactions prior to costly hardware prototyping. As a result, the Air Force Research Laboratory (AFRL) has established a dynamic hardware-in-the-loop (HIL) test-bed wherein transient simulations can be integrated through advanced real-time simulation with prototype hardware for integrated system studies and analysis. This paper details a test-bed configuration where a dynamic simulation of an aircraft turbine engine is utilized to control a dual-head electric drive stand.
Journal Article

Heat Transfer Performance of a Dual Latent Heat Sink for Pulsed Heat Loads

2008-11-11
2008-01-2928
This paper presents the concept of a dual latent heat sink for thermal management of pulse heat generating electronic systems. The focus of this work is to verify the effectiveness of the concept during charging through experimentation. Accordingly, custom components were built and a prototype version of the heat sink was fabricated. Experiments were performed to investigate the implementation feasibility and heat transfer performance. It is shown that this heat sink is practicable and helps in arresting the system temperature rise during charging (period of pulse heat load).
Technical Paper

Hardware-in-the-Loop Power Extraction Using Different Real-Time Platforms

2008-11-11
2008-01-2909
Aircraft power demands continue to increase with the increase in electrical subsystems. These subsystems directly affect the behavior of the power and propulsion systems and can no longer be neglected or assumed linear in system analyses. The complex models designed to integrate new capabilities have a high computational cost. Hardware-in-the-loop (HIL) is being used to investigate aircraft power systems by using a combination of hardware and simulations. This paper considers three different real-time simulators in the same HIL configuration. A representative electrical power system is removed from a turbine engine simulation and is replaced with the appropriate hardware attached to a 350 horsepower drive stand. Variables are passed between the hardware and the simulation in real-time to update model parameters and to synchronize the hardware with the model.
Technical Paper

Hardware-in-the-Loop Electric Drive Stand Issues for Jet Engine Simulation

2010-11-02
2010-01-1810
Next generation aircraft will require more electrical power, more thermal cooling, and better versatility. To attain these improvements, technologies will need to be integrated and optimized at a system-level. The complexity of these integrated systems will require considerable analysis. In order to characterize and understand the implications of highly-integrated aircraft systems, the effects of pulsed-power, highly-transient loads, and the technologies that drive system-stability and behavior, an approach will be taken utilizing integrated modeling and simulation with hardware-in-the-loop (HIL). Such experiments can save time and cost and increase the general understanding of electrical and thermal phenomena as it pertains to aircraft systems before completing an integrated ground demonstration. As a first step toward completing an integrated analysis, a dynamometer “drive stand” was characterized to assess its performance.
Technical Paper

External Condenser Design for Cooling of Rotating Heat Pipe in MEA Application

1999-04-06
1999-01-1360
Rotating Heat Pipe (RHP) technolog y is being developed for high speed (>20 krpm) regimes of electric motor/generator cooling. The motivation for this research is the potential application of the high speed RHPs for the thermal management of advanced rotating electrical machines. The passive nature and relatively simple features of this device are attractive for the removal of waste heat from the rotors of electric machines. Interesting air-cooling experimental results of two high speed RHPs designed, fabricated and tested at AFRL are presented here. Emphasis is made on external heat removal concepts useful for cooling the RHP condenser in order to be successful in promoting this technology to real world problems.
Technical Paper

Experimental Study of a Pre-Chamber Jet Igniter in a Turbocharged Rotax 914 Aircraft Engine

2013-04-08
2013-01-1629
An experimental study is performed to investigate the possibility of relaxing the octane requirement of a Rotax 914 engine equipped with a pre-chamber jet ignition system. A pre-chamber jet igniter with no auxiliary fuel addition is designed to replace the spark plug in cylinder two of the test engine and is evaluated across engine speeds ranging from 2500 to 5500 RPM. Experiments are performed across both normally aspirated and boosted configurations using regular 87 AKI gasoline fuel. Normally aspirated results at 98 kPa manifold absolute pressure show a 7-10° burn rate improvement with the jet ignition combustion system. Tests to determine the maximum load at optimal combustion phasing (no spark retard) are then conducted by increasing boost pressure up to maximum knock limits.
Technical Paper

Electromechanical Actuator Cooling Fan Reliability Analysis and Safety Improvement

2016-09-20
2016-01-1997
The aircraft electromechanical actuator (EMA) cooling fan is a critical component because an EMA failure caused by overheating could lead to a catastrophic failure in aircraft. Fault tree analysis (FTA) is used to access the failure probability of EMA fans with the goal of improving their mean time to failure (MTTF) from ∼O(5×104) to ∼ O(2.5×109) hours without incurring heavy weight penalty and high cost. The dual-winding and dual-bearing approaches are analyzed and a contra rotating dual-fan design is proposed. Fan motors are assumed to be brushless direct current (BLDC) motors. To have a full understanding of fan reliability, all possible failure mechanisms and failure modes are taken into account. After summarizing the possible failure causes and failure modes of BLDC fans by focusing on each failure mechanism, the life expectancy of fan ball bearings based on a major failure mechanism of lubricant deterioration is calculated and compared to that provided in the literature.
Technical Paper

Effects of Transient Power Extraction on an Integrated Hardware-in-the-Loop Aircraft/Propulsion/Power System

2008-11-11
2008-01-2926
As aircraft continue to increase their power and thermal demands, transient operation of the power and propulsion subsystems can no longer be neglected at the aircraft system level. The performance of the whole aircraft must be considered by examining the dynamic interactions between the power, propulsion, and airframe subsystems. Larger loading demands placed on the power and propulsion subsystems result in thrust, speed, and altitude transients that affect the aircraft performance and capability. This results in different operating and control parameters for the engine that can be properly captured only in an integrated system-level test. While it is possible to capture the dynamic interactions between these aircraft subsystems by using simulations alone, the complexity of the resulting system model has a high computational cost.
Technical Paper

Effect of Unsteady Flow on Intercooler Performance

2014-09-16
2014-01-2220
Two compact intercoolers are designed for the Rotax 914 aircraft engine to increase engine power and avoid engine knock. A study is performed to investigate the effects of unsteady airflow on intercooler performance. Both intercoolers use air-to-liquid cross flow heat exchangers with staggered fins. The intercoolers are first tested by connecting the four air outlets of the intercooler to a common restricted exit creating a constant back pressure which allows for steady airflow. The intercoolers are then tested by connecting the four air outlets to a 2.4 liter, 4 cylinder engine head and varying the engine speed from 6000 to 1200 RPM corresponding to decreasing flow steadiness. The test is performed under average flight conditions with air entering the intercooler at 180°F and about 5 psig. Results from the experiment indicate that airflow unsteadiness has a significant effect on the intercooler's performance.
Technical Paper

Effect of Thermal Conductivity and Latent Heat of Vaporization of Liquid on Heat Transfer in Spray Cooling

2006-11-07
2006-01-3068
The two-phase flow modeling is done using the level set method to identify the interface of vapor and liquid. The modifications to the incompressible Navier-Stokes equations to consider surface tension, viscosity, gravity and phase change are discussed in detail. The governing equations are solved using finite difference method. In the present work, investigations on the effect of thermal conductivity and latent heat of vaporization of liquid on heat transfer in a 44 µm thick liquid film containing vapor bubble with droplet impact is investigated. The importance of thermal conductivity and latent heat of vaporization of liquid on heat transfer is identified. The variation of heat flux with thermal conductivity and latent heat is plotted. The computed liquid and vapor interface, velocity vector and temperature distributions at different time instants are also visualized for better understanding of the heat removal.
X