Refine Your Search

Topic

Search Results

Viewing 1 to 17 of 17
Technical Paper

Vibration Reduction Applying Skew Phenomena of Needle Roller Bearings in Brake Actuators

2006-04-03
2006-01-0881
Generally, automobiles have many performance requirements for comfort, of which noise, vibration and harshness are very important. Toyota Motor Corporation equipped several 2003 models with the second-generation Electronically Controlled Brake system (ECB2). These ECB2 actuator units adopted a new structure that reduced pumping noise by controlling the skew phenomena of needle roller bearings. Normally, needle roller bearings are advantageous over other bearings in cases where a large force is loaded on bearings, because the contact areas can be made larger. However, a thrust force arises from skew phenomena because of minute clearances among the component parts of needle roller bearings. As a result, axial vibration of the bearing shaft sometimes occurs due to the thrust force. This paper explains how the thrust force generated from the skew phenomena of needle roller bearings occasionally affects the pumping vibration level of equipped machinery such as the brake actuator unit.
Technical Paper

Study of Braking Characteristics of New Manual Braking System (1st Report)

2024-04-09
2024-01-2497
The purpose of this study is to propose braking characteristics that are easy for drivers to handle in a system in which braking and driving operations are performed by hand. Genetic algorithm optimization of braking characteristics showed that the best deceleration tracking was achieved by an FG diagram with a logarithmic function shape. In contrast, the slope of the optimal FG diagram tended to decrease as the driver's proportional gain increased.
Technical Paper

Smart Algorithm for a Tire Pneumatic Pressure Monitor Embedded in ABS Program

1998-02-23
980237
This paper describes methods to attain a low cost tire pneumatic pressure monitor. We already established two kinds of algorithms for indirect detection of under-inflated tires without requiring any air pressure sensors. One method is to use a disturbance observer and the least mean square method. The other method is to compare the loaded radii of the tires. We have developed an algorithm that reduces the number of calculations needed, while maintaining a relatively small program size, and realized a tire pneumatic pressure monitor that does not require any hardware cost, by incorporating it into the program for the antilock brake system (ABS).
Journal Article

High Efficiency Electromagnetic Torque Converter for Hybrid Electric Vehicles

2016-04-05
2016-01-1162
A new concept of an electromagnetic torque converter for hybrid electric vehicles is proposed. The electromagnetic torque converter, which is an electric system comprised of a set of double rotors and a stator, works as a high-efficiency transmission in the driving conditions of low gear ratio including a vehicle moving-off and as a starting device for an internal combustion engine. Moreover, it can be used for an electric vehicle driving as well as for a regenerative braking. In this concept, a high-efficiency drivetrain system for hybrid electric vehicles is constructed by replacing a fluid-type torque converter with the electromagnetic torque converter in the automatic transmission of a conventional vehicle. In this paper, we present the newly developed electromagnetic torque converter with a compact structure that enables mounting on a vehicle, and we evaluate its transmission efficiency by experiment.
Technical Paper

Development of an Electronically Controlled Brake System for Fuel-efficient Vehicles

2016-04-05
2016-01-1664
To solve various environmental problems, fuel-efficient vehicles that reduce CO2 emissions as well as exhaust gas emissions have been developed. In such vehicles, a regenerative brake is used to further reduce fuel consumption. Because the market size for such vehicles is expanding, a brake system is required that can be used in a wide range of vehicles extending from internal combustion engine vehicles (ICEVs) to electric vehicles (EVs). In addition, issues such as deceleration fluctuation and brake pedal fluctuation arise because the regenerative brake force is dependent on the vehicle speed. This paper presents a brake system configuration and its element technologies that can replace existing brake systems in different vehicles ranging from ICEVs to EVs. The proposed system can realize a regenerative cooperative brake not only by replacing the brake booster unit but also without replacing the modulator.
Technical Paper

Development of Vehicle Dynamics Management System for Hybrid Vehicles - ECB System for Improved Environmental and Vehicle Dynamic Performance -

2002-05-07
2002-01-1586
In anticipation of the increased needs to further reduce exhaust gas emissions and improve fuel consumption, a new brake-by-wire system called an “Electronically Controlled Brake” system (hereafter referred to as “ECB”) has been developed. With this brake system, which is able to smoothly control the hydraulic pressure that is applied to each of the four wheel cylinders on an individual basis, functional enhancements can be added by appropriately modifying its software. This paper discusses the necessity of the ECB, the system configuration, and the results of its application on hybrid vehicles.
Journal Article

Development of New Electronically Controlled Hydraulic Unit for Various Applications

2016-04-05
2016-01-1660
The use of hybrid, fuel cell electric, and pure electric vehicles is on the increase as part of measures to help reduce exhaust gas emissions and to help resolve energy issues. These vehicles use regenerative-friction brake coordination technology, which requires a braking system that can accurately control the hydraulic brakes in response to small changes in regenerative braking. At the same time, the spread of collision avoidance support technology is progressing at a rapid pace along with a growing awareness of vehicle safety. This technology requires braking systems that can apply a large braking force in a short time. Although brake systems that have both accurate hydraulic control and large braking force have been developed in the past, simplification is required to promote further adoption.
Technical Paper

Development of Electronically Controlled Brake System for Hybrid Vehicle

2002-03-04
2002-01-0300
We expect to reduce exhaust gas emissions further and improve fuel consumption, by developing a new brake system (called brake-by-wire system) to control the friction brake force and the regenerative brake force of the two motors, one each at front and rear axle. Within this new system we developed the new technology listed below. 1 To compensate the changes of the regenerative brake force of front and rear motors, the friction brake force is controlled by adjusting the wheel cylinder hydraulic pressures. 2 The pressure of each wheel cylinder is controlled by linear solenoid valves. So the hydraulic pressure of wheel cylinders is controlled individually and smoothly. This brake system also operates ABS, VSC, TRC functions. The vehicle stability performance is improved by controlling the braking and driving torque of two motors and also controlling the friction brake torque cooperatively.
Technical Paper

Development of Crawl Control

2008-04-14
2008-01-1227
Toyota Motor Corporation has already designed and developed vehicle brake control systems for relatively low speed off-road driving, such as Downhill Assist Control, Hill-start Assist Control and Active Traction Control. Though off-road utility is improved by virtue of these systems, in specific situations actual performance still depends on driving technique since the driver is required to control the accelerator pedal. Toyota has integrated these existing systems, and developed a new driving technology for off-road driving called “Crawl Control.” Crawl Control automatically modulates brake torque and drive torque to help keep the vehicle speed constant and slow. Unskilled drivers can thereby attain improved capabilities in places where high-level driving techniques are required. This system also reduces the effort required to control the accelerator and the brake pedal. This paper presents a new control algorithm for the realization of this Crawl Control system.
Technical Paper

Development of Automatic Braking System to Help Reduce Rear Impacts

2017-03-28
2017-01-1408
A Rear Cross Traffic Auto Brake (RCTAB) system has been developed that uses radar sensors to detect vehicles approaching from the right or left at the rear of the driver’s vehicle, and then performs braking control if the system judges that a collision may occur. This system predicts the intersecting course of approaching vehicles and uses the calculated time-to-collision (TTC) to control the timing of automatic braking with the aim of helping prevent unnecessary operation while ensuring system performance.
Technical Paper

Development of Active Rear Steer System Applying H∞-μ synthesis

1998-02-23
981115
A new active rear steer (ARS) system has been developed. ARS is an electric four wheel steering system controlled by new logic(designed by H∞-μ synthesis) which maintains good control performance even if the vehicle parameters and /or road surface conditions are changed. ARS control is a typical technology to prevent vehicle side -slip in linear region of tire characteristic. This system offers easy control and reduces vehicle behavior of yawing motion before approaching critical limit. By combining ARS and vehicle stability control (VSC), it is possible to support driving precisely from normal driving to excessive driving. This paper describes the details of this new system which has been installed on 1997 model TOYOTA ARISTO for practical use in JAPAN.
Technical Paper

Characteristics of Vehicle Stability Control's Effectiveness Derived from the Analysis of Traffic Accident Data Statistics

2004-10-18
2004-21-0074
Vehicle Stability Control (VSC) is a system designed to help drivers when skidding or unstable vehicle behavior is about to occur. We have studied the characteristics of VSC in reducing accidents by analyzing accident data statistics in Japan. The results indicate that VSC is effective in reducing single car accidents and head-on collisions with other automobiles. In these accidents, the analysis showed that VSC may be more helpful in reducing a larger number of accidents in the higher speed range where vehicle dynamics plays a greater part. It also showed that VSC may contribute to reducing accidents that result from unstable vehicle behavior. VSC demonstrated more effectiveness in reducing accidents involving lateral & rear impacts than those of frontal impacts, and in reducing accidents on wet & snowy/icy roads than those on dry roads.
Technical Paper

Analysis of Friction Coefficient Variation with Moisture between Friction Surfaces

2016-04-05
2016-01-0411
If a vehicle is left in a humid environment, the coefficient of friction between the brake pads and discs increases, generating a discomforting noise during braking called brake squeal. It is assumed that this increase in the coefficient of friction in a humid environment is the effect of moisture penetrating between the brake friction surfaces. Therefore, this paper analyzes the factors causing coefficient of friction variation with moisture between the friction surfaces by dynamic observation of these surfaces. The observation was achieved by changing the disc materials from cast iron to borosilicate glass. One side of the glass brake disc was pushed onto the brake pad and the sliding surface was observed from the opposite side by a charge coupled device (CCD) camera. First, a preliminary test was carried out in a dry state using two pad materials with different wear properties to select the appropriate pad for observing the friction surfaces.
Technical Paper

AISIN AW New High Torque Capacity Six-Speed Automatic Transmission for FWD vehicles

2005-04-11
2005-01-1020
AISIN AW has developed a new FWD 6-speed automatic transmission “TF-80SC” for luxury cars with high torque engines. This newly developed automatic transmission (A/T) is based on the concept of the FWD 6-speed A/T “TF-60SN” that we have already introduced to the world market. The basic concept for the 6-speed A/T is to achieve weight saving and compact as well as better fuel efficiency and driving performance in comparison with conventional 5-speed A/Ts. Of course the shift feel must be the top level in the world, so we increased torque capacity of the TF-80SC to cover luxury cars with high torque engine. One of the outstanding features of the A/T is an advanced band brake that allows simultaneous pursuits of high capacity, weight saving, size reduction and high efficiency as well as high-quality shift feeling qualified for luxury cars. This paper describes the advantages and structure of the new A/T with a focus on our approach to new technology of the band brake system.
Technical Paper

A Study of Reduction for Brake Squeal in Disc In-Plane Mode

2012-09-17
2012-01-1825
Brake squeal is a phenomenon of self-induced vibration of the brake components during braking. There are many kinds of brake squeal cases whose mechanisms require acting on a various number of potential root causes. Brake squeal phenomena can be generally separated into 2 main mode types related to the direction of disc vibration involved: in-plane mode and out-of-plane mode. For out-of-plane mode, a number of existing countermeasures can be potentially applied after characterization of the squeal occurrence condition by direct experiment or simulation analysis[1,2,3,4]. However, as there are many possible mechanisms and root causes for the in-plane modes[5,6,7,8,9,10,11,12,13], it is generally necessary to perform a detailed analysis of the vibration mechanism before implementing a countermeasure.
Technical Paper

A Silicon Micromachined Gyroscope and Accelerometer for Vehicle Stability Control System

2004-03-08
2004-01-1113
A silicon micromachined gyroscope (angular rate sensor, yaw rate sensor) and accelerometer for vehicle stability control system is presented. The 5.1mm×4.7mm sensor chip is fabricated with a silicon micromachining process using a SOI (Silicon on Insulator) silicon wafer and a deep reactive ion etching. The sensor chip has a pair of resonators which are mechanically coupled and function as a tuning fork. The resonators are driven by electrostatic force and their movements are detected by capacitively sensing angstrom displacements. This sensor chip works not only as a gyroscope but also as an accelerometer with a single sensor chip. The sensor unit consists of the sensor chip above, a signal processing IC, a microcomputer and an EEPROM. sigma-delta analog-to-digital conversion (sigma-delta ADC) is adopted to realize the digital calibration of sensor properties.
Journal Article

A Custom Integrated Circuit with On-chip Current-to-Digital Converters for Active Hydraulic Brake System

2016-04-05
2016-01-0091
This paper presents a custom integrated circuit (IC) on which circuit functions necessary for “Active Hydraulic Brake (AHB) system” are integrated, and its key component, “Current-to-Digital Converter” for solenoid current measurement. The AHB system, which realizes a seamless brake feeling for Antilock Brake System (ABS) and Regenerative Brake Cooperative Control of Hybrid Vehicle, and the custom IC are installed in the 4th-generation Prius released in 2015. In the AHB system, as linear solenoid valves are used for hydraulic brake pressure control, high-resolution and high-speed sensing of solenoid current with ripple components due to pulse width modulation (PWM) is one of the key technologies. The proposed current-to-digital converter directly samples the drain-source voltage of the sensing DMOS (double-diffused MOSFET) with an analog-to-digital (A/D) converter (ADC) on the IC, and digitizes it.
X