Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

The Recycling and Reclamation of Metal-Matrix Composites

1993-03-01
930182
The recycling and reclamation of metal-matrix composites (MMC's) are critical aspects of the commercialization process. By recycling, we mean the economic processing of MMC scrap for reuse as composite. Reclamation refers to the separation and recovery of the individual components of the composite, i.e., the various aluminum alloys and ceramic particles. Three forms of MMC wrought alloy scrap have been considered; i.e., D. C. (direct chill) cast log ends, extrusion butts, and cut extrusion scrap. Recycling each of these forms of scrap back into D. C. cast extrusion billet has been demonstrated. This has been accomplished by recycling the scrap back through the basic mixing process. Various ratios of scrap to virgin composite have been explored and optimum blends are being studied. Similarly, for MMC foundry alloy (high silicon) gates and risers produced in shape-casting, fluxing and degassing techniques have been developed so these may be recycled back into useful castings.
Technical Paper

The Lincoln Mark VIII Cast Aluminium Suspension Control Arm (Parallel Development)

1994-03-01
940874
An A356T61 cast aluminum lower suspension control arm has been put into production for the Lincoln Mark VIII. The mechanical requirements which drive the design for a critical part like this are discussed, together with some of the background knowledge needed to address the issues surrounding alloy and process selection. Particularly as it must be realized that the process impacts the degree to which the potential of the alloy can be realized. With this in mind, some of the research activities which have been spawned in parallel with the production activities are briefly covered. The sequence of events involved in the design and prototyping of the part itself are outlined, as is the implementation of a specialized low pressure casting line to produce the part. Part performance to date has been excellent and the quality controls and test methods which have been put in place to see that this remains so are also covered.
Technical Paper

The Development of a Joint Design Approach for Aluminium Automotive Structures

1992-09-01
922112
The paper presents the work on the development of a joint design approach for adhesively bonded and spot-welded aluminium automotive structures. The approach includes an allowance for joint geometric variables, manufacturing variability and complex joint loading. An important aspect in the development of the approach has been to minimise the detail required to model the joints in a full vehicle model. The paper describes the development of the joint design approach and identifies many of the joint variables which may influence joint performance. The accuracy of the approach is demonstrated on a simple structure subjected to complex loading, and the use of the approach is illustrated on a full vehicle structure.
Technical Paper

Reduced Finishing Costs for Aluminum Intensive Vehicles

1996-02-01
960170
Due to the inherently superior corrosion resistance of aluminum compared to automotive steels, phosphating and electrocoating are not necessarily required to provide good corrosion protection to aluminum intensive vehicles. This allows the potential for significant cost savings in the overall finishing process by eliminating these steps. Advantage can also be taken of the movement towards the use of powder primer surfacers to reduce solvent emissions in that the powder coating can be applied directly to a suitably pretreated aluminum surface. Pretreatments which are optimized for aluminum and much simpler to control than phosphating were chosen for trials based upon discussions with chemical suppliers. In this paper, the adhesion and corrosion characteristics of these selected pretreatment/powder primer systems were compared to standard phosphated and electrocoated AA6111 automotive closure sheet.
Technical Paper

How to Weld Bond Aluminium with Structural Adhesives

1997-02-24
970018
Weld bonding of aluminium autobody structures offers automotive vehicle manufacturers the opportunity of achieving significant weight reduction, compared to equivalent steel structures. Further, this is achievable using volume production manufacturing methods. This paper considers all key aspects of the weld bonding process, in particular the equipment requirements and the factors that are important in reliably achieving satisfactory structures. Methods of minimising damage to the adhesive bondline and assessment of spot weld quality are discussed. Using experience gained from extensive weld bonding trials, suitable parameters for robust weld bonding are recommended.
Technical Paper

Galvanic Corrosion Prevention of Steel-Aluminum Couples

1993-10-01
932357
Efforts towards weight reduction are leading towards increasing use of aluminum components on automobiles. Although aluminum on its own has inherently superior corrosion resistance to steel, galvanic action between the aluminum and steel or galvanized parts can lead to severe corrosion. Straightforward and effective methods of preventing galvanic corrosion from the subject of this paper. Since many aluminum components are connected to steel structures by mechanical fasteners, protective coatings on fasteners were evaluated as well. Galvanic test couples were prepared in a manner simulating typical automotive assembly conditions while incorporating features which would lead to enhanced corrosion. A variety of chemical treatments and coatings on the fasteners as well as barriers between the dissimilar metals were evaluated for corrosion prevention between the aluminum and cold rolled or galvanized steel. Comparison between neutral salt spray and cyclic corrosion tests is provided.
Technical Paper

Effects of Alloy Composition and Condition on Filiform Corrosion Performance of Cast Aluminum Wheels

1997-02-24
970021
The movement towards extended warranties in the automobile industry has focussed attention on corrosion performance of many components, particularly cast aluminum wheels. Filiform corrosion is of particular concern since it can severely affect the appearance of the wheel. The appearance and the choice of wheel design are the most attractive features to customers. In order to enhance the filiform corrosion resistance of cast aluminum wheels, cleaning, pretreatment, coating and alloy parameters are critical and need to be optimized. In this paper, the effects of alloy composition and condition on filiform corrosion are reviewed. A series of cast discs were prepared with variations in iron, zinc and copper levels around the standard A356.2 alloy composition. Apart from composition, certain specimens were subjected to different heat treatment and ageing conditions. The effects of porosity and different machining procedures were also evaluated.
Technical Paper

Dent Resistance of Medium Scale Aluminum Structural Assemblies

2001-03-05
2001-01-0757
This work outlines the evaluation of static and dynamic dent resistance of medium scale structural assemblies fabricated using AA6111 and AA5754. The assemblies fabricated attempt to mimic common automotive hood designs allowing for a parametric study of the support spacing, sheet thickness and panel curvature. Closure panels of AA6111, of two thicknesses (0.8, and 0.9mm), are bonded to re-usable inner panels fabricated using AA5754 to form the structural assemblies tested. While normal practice would use the same alloy for both the inner and the outer, in the current work, AA5754 was adopted for ease of welding. Numerical simulations were performed using LS DYNA. A comparison of experimental and numerically simulated results is presented. The study attempts to establish an understanding of the relationship between structural support conditions and resulting dent depths for both static and dynamic loading conditions.
Technical Paper

A New Approach for Robust High-Productivity Resistance Spot Welding of Aluminium

2003-03-03
2003-01-0575
Process consistency and long electrode-life are essential requirements for users of resistance spot welding (RSW) in the automotive industry. RSW is the dominant joining process for manufacturing automotive body structures from sheet materials. The technique is cost effective (particularly in high-volume production), makes joints rapidly, is easy to automate, and it has no per-joint consumables. These beneficial attributes apply equally to RSW of aluminium automotive structures. However, there has been some reluctance in the industry to embrace spot welding for aluminium. This is because the electrode-life is much shorter than that experienced when welding traditional uncoated, plain-carbon steels, and there is a general lack of confidence in the consistency of the process. This paper describes a potentially non-intrusive method that addresses these concerns.
X