Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

The Effects of a Reduced Pressure Scenario on the Columbus APM Environmental Control System

1992-07-01
921247
Manned Space Systems are usually designed to support the crew atmospheric conditions equivalent to those at sea level. In phases with frequent Extra Vehicular Activities (EVA), a reduced pressure environment is preferable to facilitate the EVA suit prebreathing procedures. The Columbus Attached Pressurised Module (APM) will face both pressure scenarios during its life. Operation at different pressure levels primarily affects the performance of the Environmental Control System (ECS) of the pressurised elements. A lower air density results in reduced heat exchange, adversely affecting both the crew comfort and the electronics air cooling. This paper reports the results of a study performed to identify the constraints and the numerous potential problem areas related to APM operations at reduced pressure. Effects of the reduced pressure on the environmental parameters have been investigated.
Technical Paper

Microbial Contamination Control and Prevention During Space H/W Manufacturing and Assembly

1994-06-01
941310
Microorganism accumulation and growth onboard a spacecraft may impact adversely on crew efficiency and safety as well as system, subsystems and payload. The results of test campaigns performed at Alenia Spazio in Summer 1993 are reported here. From them, some simple and effective prevention methods to be applied during the manufacturing and integration phases of a pressurised spacecraft have been identified and are here discussed. Although data obtained from Earth experience may be considered useful, it is uncertain and unfit for space station operational lifespan. Therefore, it is necessary to build a model of the phenomenon, able to provide a series of quantitative data as a function of different parameters related to environmental characteristics, crew, and on-board activities.
Technical Paper

ECLSS Study for a European SpaceHaven

2005-07-11
2005-01-2808
The forthcoming planetary missions require an autonomous crew habitation and a high mass of metabolic consumables. To minimise the launch mass and/or the logistic needs, these missions shall then be based on regenerative technologies able to obtain resources for the human life from the on board produced wastes, guaranteeing a high closure degree of the system. In this context ESA has promoted a preliminary study called SpaceHaven, to understand which functions must be guaranteed for a long term and autonomous mission and to investigate about the hardware/technologies to be exploited to meet the identified functions. A dedicated demonstration program is to be proposed when needed technologies are neither available in Europe nor currently covered by a dedicated technological development.
Technical Paper

Design Concepts for the Thermal Control of a Crew Transport Vehicle

1996-07-01
961542
Under the guidelines established by the European Space Agency (ESA), a specific effort was devoted to define the preliminary design concepts for a Crew Transport Vehicle (CTV) compatible with the Ariane 5 launcher. The mission objectives of this vehicle include the possibility of transporting 4 people (and a limited amount of pressurized payload) to the International Space Station Alpha (ISSA), and returning them to Earth safely. Different options were identified at system level, however a modular vehicle was commonly adopted: a Crew Module (CM) designed to withstand the typical phases of the atmospheric re-entry and provide an adequate environment for the crew during all the mission a Resource Module (RM) envisaged to provide the propulsion provisions for orbital transfer and deorbiting; in addition it carries all the necessary resources to support the mission from lift-off until separation from the CM.
Technical Paper

Crew Interface Analysis for the Mini Pressurized Logistics Module - An Interaction Between Computer Simulation, Task Analysis and Mock-Up Test Evaluation

1994-06-01
941589
A Human Factors Engineering (HFE) analysis has been involved in the design process of the Mini Pressurized Logistics Module (MPLM) for the International Space Station (ISS) since the beginning, as an integrated part of the design support activities. The support of HFE in the configuration process has been directed towards the optimization of the MPLM design through the analysis and evaluation of all the interfaces occurring in the module - nominal and non-nominal - between the crew, the system and the subsystem equipment. In order to identify and analyze all the crew interfaces occurring inside the module, a systematic approach, involving different disciplines, is necessary. The integration of three different tools such as computer simulation, task analysis and mock-up test activities has been employed as an organic unit, in order to establish a comprehensive collection of useful data.
Technical Paper

Columbus APM Water Loop Architecture Tradeoffs to Meet Space Station Freedom Interface Requirements

1992-07-01
921244
The Columbus Attached Pressurised Module (APM) Active Thermal Control System (ATCS) water loop collects the APM waste heat and transfers it to the Space Station Freedom (SSF) Central Thermal Bus (CTB). The interface between the APM water loop and the SSF ammonia loops is achieved with two ammonia/water interloop heat exchangers (IH/X), one being low temperature (LT) and the other moderate temperature (MT). The APM internal water loop provides cooling to payload and subsystem users which have varying temperature requirements at their heat rejection interfaces, and can be categorized as cold branch and warm branch users, (e.g. condensing heat exchanger (CHX) and refrigerator are cold branch users, while Avionic heat exchanger (AHX) and furnace payloads would be warm branch users.)
Technical Paper

Columbus APM TCS Design and Development Status

1994-06-01
941566
The redesign of Space Station Freedom (SSF) and the requirement of the Columbus programme board to reduce costs have led ESA to change the design and development strategy of the Attached Pressurised Module (APM). A revised APM reference design for integration with the SSF Alpha has been produced with sufficient flexibility to allow adaptation as part of a global space station or to permit operations as part of a European Free Flyer. The main objectives of the redesign have been to simplify the design, reduce the costs and provide increased autonomy from the SSF. The key groundrules for the redesign have been an AR5/ATV launch from the Centre Spatial Guyanais (CGS) into an orbit inclined at 51.6 degrees. The APM has a length equivalent to 5 double racks and a net launch mass of 1200 kg. It will be delivered to the SSF at an altitude of 407 km for a 10-year operational life. Safe disposal will be by ATV.
Technical Paper

CFD Modelling on Fire Detection and Suppression in a Columbus Rack

1994-06-01
941607
The Columbus fire suppression procedure is based on a centralized CO2 distribution system which injects the CO2 stored in a tank into the volume where the fire has to be extinguished. The fire is detected in each volume by means of the so-called REP (Rack Essential Package), which contains a fan and the smoke sensor. In order to assess the Fire Detection and Suppression design concept and to identify possible critical areas, Alenia Spazio - with the support of Flowsolve UK, and on behalf of EUROCOLUMBUS - has performed an analysis using a Computational Fluido-Dynamic (CFD) tool. The rack containing the water pump assembly and other electronic equipment has been chosen for the study. As far as the Fire Detection is concerned, the simulation intends to predict the flow field established in the rack by the ventilation system and the transport of smoke by this velocity field from a supposed point source.
Technical Paper

Application of the Crew Support Equipment Design Validation Philosophy in the Miriam '95 Programme

1995-07-01
951516
Space hardware design, as well as that for hardware destined to work in 1-g environment, needs to be submitted to a complete design verification process before final utilisation in nominal conditions. As space hardware ground verification is difficult and expensive, a design verification philosophy has been developed in order to reach, as far as possible, the highest degree of space hardware reliability and usability and hence to increase crew productivity via a perfect integration of man and machines. This activity is mainly based on a complete hardware testing process (first on ground, then in microgravity simulated environment and, at the end, during a short duration space mission) and on a correct test procedure preparation in order to avoid inconveniences during test execution. Opportunity for an application of the design verification philosophy has been given by Columbus Precursor Flights and the related MIRIAM '95 programme.
Technical Paper

1500 W Deployable Radiator with Loop Heat Pipe

2001-07-09
2001-01-2194
Two-phase capillary loops are being extensively studied as heat collection and rejection systems for space applications as they appear to satisfy several requirements like low weight, low volume, temperature control under variable heat loads and/or heat sink, operation under on ground and micro gravity conditions, simplicity of mounting and heat transfer through tortuous paths. In 1998–2000 Alenia defined and Lavochkin Association developed the Deployable Radiator on the base of honeycomb panels, axial grooved heat pipes and Loop Heat Pipe. It was designed for on-ground testing.
X