Refine Your Search

Topic

Author

Search Results

Technical Paper

Vehicle System Modeling for Computer-Aided Chassis Control Development

2005-04-11
2005-01-1432
As the complexity of automotive chassis control systems increases with the introduction of technologies such as yaw and roll stability systems, processes for model-based development of chassis control systems becomes an essential part of ensuring overall vehicle safety, quality, and reliability. To facilitate such a model-based development process, a vehicle modeling framework intended for chassis control development has been created. This paper presents a design methodology centered on this modeling framework which has been applied to real world driving events and has demonstrated its capability to capture vehicle dynamic behavior for chassis control development applications.
Journal Article

Using Generic Tyre Parameters for Low Friction Surfaces in Full Vehicle Simulations

2017-03-28
2017-01-1506
An intervention of vehicle stability control systems is more likely on slippery surfaces, e.g. when the road is covered with snow or ice. Contrary to testing on dry asphalt, testing on such surfaces is restricted by weather and proving grounds. Another drawback in testing is the reproducibility of measurements, since the surface condition changes during the tests, and the vehicle reaction is more sensitive on slippery surface. For that, simulation enables a good pre-assessment of the control systems independent from testing conditions. Essential for this is a good knowledge about the contact between vehicle and road, meaning a good tyre model and a reasonable set of tyre model parameters. However, the low friction surface has a high variation in the friction coefficient. For instance, the available lateral acceleration on scraped ice could vary between 0.2 and 0.4 g within a day. These facts lead to the idea of using generic tyre parameters that vary in a certain range.
Technical Paper

Time-Domain Explicit Dynamic CAE Simulation for Brake Squeal

2023-05-08
2023-01-1061
Disc brake squeal is always a challenging multidisciplinary problem in vehicle noise, vibration, and harshness (NVH) that has been extensively researched. Theoretical analysis has been done to understand the mechanism of disc brake squeal due to small disturbances. Most studies have used linear modal approaches for the harmonic vibration of large models. However, time-domain approaches have been limited, as they are restricted to specific friction models and vibration patterns and are computationally expensive. This research aims to use a time-domain approach to improve the modeling of brake squeal, as it is a dynamic instability issue with a time-dependent friction force. The time-domain approach has been successfully demonstrated through examples and data.
Technical Paper

The Effects of Flare Component Specifications on the Sealing of Double Inverted Flare Brake Tube Joints

2009-04-20
2009-01-1029
While SAE double inverted flares have been in use for decades, leaking joints continue to be a problem for OEMs in production settings consuming time and energy to detect and correct them before releasing vehicles from the assembly plant. It should be noted that this issue is limited to first-time vehicle assembly; once a flared brake tube joint is sealed at the assembly plant it remains sealed during normal customer usage. From their inception through the late 1980s most brake tubes have been 3/16″ nominal diameter. With the advent of higher flow requirements of Traction Control and Yaw/Stability control systems, larger tubes of 1/4″ and 5/16″ size have also been introduced. While it was known that the first-time sealing capability of the 3/16″ joint was not 100%, leakers were generally containable in the production environment and the joint was regarded as robust.
Technical Paper

The Effect of Contact Surface and Bolt Torque Variations on the Brake Rotor Run-Out

1998-02-23
980596
Deformation of the hub, rotor, and the wheel results in lateral run-out of the rotor. The effect of contact surface variations and bolt forces on the deformation is investigated. It is analytically shown that the run-out due to deformation is caused primarily due to the radial and circumferential moments generated in the hub and the rotor due to bolt tightening. Case studies illustrate the interaction between hub, rotor, and the wheel for various surface conditions. Design guidelines are provided to reduce rotor run-out.
Technical Paper

The Application of Experimental Design Method to Brake Induced Vehicle Vibrations

1998-02-23
980902
Vehicle sensitivity to brake induced vehicle vibration has been one of the key factors impacting overall vehicle quality. This directly affects long term customer satisfaction. The objective of this investigation is to understand the sensitivities of a given suspension, and steering system with respect to brake induced vehicle vibration, and develop possible solutions to this problem. Design of experiment methods have been used for this chassis system sensitivity study. The advantage of applying the design of experiment methodology is that it facilitates an understanding of the interactions between the hardware components and the sensitivity of the system due to the component change. The results of this investigation have indicated that the friction of suspension joints may affect vehicle system response significantly.
Technical Paper

The 1970 Ford Dual Circuit Air Brake System

1970-02-01
700504
The braking system presented in this article represents a new and forward thinking philosophy regarding commercial vehicle air brake systems. A concept that provides responsive service and emergency brake applications with optimum vehicle control, by the same driver action on the brake pedal. The uniqueness of the total system, and each circuit's function thereof, is explained in basic detail. In addition, the engineering, quality control, and assembly techniques to manufacture the vehicle with assurance that design intent is achieved, are discussed.
Technical Paper

Tanker Truck Sloshing Simulation Using Bi-Directionally Coupled CFD and Multi-Body Dynamics Solvers

2014-09-30
2014-01-2442
In this work, the multi-disciplinary problem arising from fluid sloshing within a partially filled tanker truck undergoing lateral acceleration is investigated through the use of multiphysics coupling between a computational fluid dynamics (CFD) solver and a multi-body dynamics (MBD) solver. This application represents a challenging test case for simulation technology within the design of commercial vehicles and is intended to demonstrate a novel approach in the field of computer aided engineering. Computer aided engineering is playing a more predominant role in the design process for commercial and passenger vehicles. Better understanding of the real time loading and responses on a vehicle during intended or unintended use can result in improved design and reduced cost over traditional designs that relied heavily on assumed loads.
Technical Paper

Switching Frequency Optimization of Boost Converter for HEV Applications

2017-03-28
2017-01-1236
A hybrid electric vehicle (HEV) can utilize the electromechanical path to optimize the ICE operation and implement the regenerative brake, the fuel economy of a vehicle therefore gets improved significantly. Bi-directional Boost converter is usually used in an electric drive system to boost the high voltage (HV) battery voltage to a higher dc-link voltage. The main advantages for a system with Boost converter is that the traction inverter is de-coupled from battery voltage variations causing it to be over-sized. When designing this Boost converter, the switching frequency is a key parameter for the converter design. Higher switching frequency will lead to higher switching loss of power device (IGBT +diode), moreover, it has significant impact on inductor ripple current, HV battery ripple current and input capacitor current. Therefore, the switching frequency is one of the most important parameters for the design and selection of both active and passive components.
Technical Paper

Simulating the Effect of Insulators in Reducing Disc Brake Squeele

2005-10-09
2005-01-3944
Disc brake squeal is a very complicated phenomenon, and the influence of insulators in suppressing squeal is not fully understood. The aim of this paper is increase the understanding of the effect of insulators. A previous paper [1] presented an experimental technique for measuring the frequency- and temperature- dependent properties of viscoelastic materials currently used in insulators. The present work continues by considering the coupled vibrations of the brake pad and insulator. A comparison of natural frequencies found from experimental modal analysis and finite element modeling indicates agreement to with 5%. Experimentally determined modal loss factors of the brake pad vary dramatically with frequency, changing by a factor of 2 over the frequency range 2-11 kHz. A method for including this frequency dependence, as well as the frequency dependence of the insulator material, in state-of-the-art finite element software is proposed.
Journal Article

Signal Processing for Rough Road Detection

2010-04-12
2010-01-0673
Misfire diagnostics are required to detect missed combustion events which may cause an increase in emissions and a reduction in performance and fuel economy. If the misfire detection system is based on crankshaft speed measurement, driveline torque variations due to rough road can hinder the diagnosis of misfire. A common method of rough road detection uses the ABS (Anti-Lock Braking System) module to process wheel speed sensor data. This leads to multiple integration issues including complexities in interacting with multiple suppliers, inapplicability in certain markets and lower reliability of wheel speed sensors. This paper describes novel rough road detection concepts based on signal processing and statistical analysis without using wheel speed sensors. These include engine crankshaft and Transmission Output Speed (TOS) sensing information. Algorithms that combine adaptive signal processing and specific statistical analysis of this information are presented.
Technical Paper

Sensor Fusion Approach for Dynamic Torque Estimation with Low Cost Sensors for Boosted 4-Cylinder Engine

2021-04-06
2021-01-0418
As the world searches for ways to reduce humanity’s impact on the environment, the automotive industry looks to extend the viable use of the gasoline engine by improving efficiency. One way to improve engine efficiency is through more effective control. Torque-based control is critical in modern cars and trucks for traction control, stability control, advanced driver assistance systems, and autonomous vehicle systems. Closed loop torque-based engine control systems require feedback signal(s); indicated mean effective pressure (IMEP) is a useful signal but is costly to measure directly with in-cylinder pressure sensors. Previous work has been done in torque and IMEP estimation using crankshaft acceleration and ion sensors, but these systems lack accuracy in some operating ranges and the ability to estimate cycle-cycle variation.
Technical Paper

Safe Braking Distance Alert

2008-10-07
2008-36-0234
Since the technology applied to vehicles is constant increasing, new systems are being developed to improve performance, comfort and safety. The main way to improve safety is to keep the driver informed about unsafe traffic. In this paper we propose the development of an algorithm that works with an Antilock Brake System, in order to keep the driver informed about the distance between the vehicle equipped with this system and another one in front of it, by this way there is more time to make a safe breaking. The interaction between the driver and this method is given by a visual alert system.
Technical Paper

Robust Observer Roll Rate Sensor Fault Detection

2017-03-28
2017-01-1572
The detection and diagnosis of sensor faults in real-time is necessary for satisfactory performance of vehicle Electronic Stability Control (ESC) and Roll Stability Control (RSC) systems. This paper presents an observer designed to detect faults of a roll rate sensor that is robust to model uncertainties and disturbances. A reference vehicle roll angle estimate, independent of roll-rate sensor measurement, is formed from available ESC inertial sensor measurements. Residuals are generated by comparing the reference roll angle and roll rate, with the observer outputs. Stopping rules based on the current state of the vehicle and the magnitude of the residuals are then used to determine if a sensor fault is present. The system’s low order allows for efficient implementation in real-time on a fixed-point microprocessor. Modification of the roll rate sensor signal during in vehicle experiments shows the algorithm’s ability to detect faults.
Technical Paper

Regenerative Braking Control Development for P2 Parallel Hybrid Electric Vehicles

2017-03-28
2017-01-1149
Regenerative braking in hybrid electric vehicles is an essential feature to achieve the maximum fuel economy benefit of hybridization. During vehicle braking, the regenerative braking recuperates its kinetic energy, otherwise dissipated into heat due to friction brake, into electrical energy to charge the battery. The recuperation is realized by the driven wheels propelling, through the drivetrain, the electric motor as a generator to provide braking while generating electricity. “Rigid” connection between the driven wheels and the motor is critical to regenerative braking; otherwise the motor could drive the input of the transmission to a halt or even rotating in reverse direction, resulting in no hydraulic pressure for transmission controls due to the loss of transmission mechanical oil pump flow.
Technical Paper

Reduction of Groan and Grind Noise in Brake Systems

2011-09-18
2011-01-2364
Low frequency brake system noise has been a systemic and ongoing issue for several automakers. The noise is a combined effect of brake and suspension systems working with each other. The noise transmission path is also important. The latest warranty and quality indicators on this has resulted in high degree of dissatisfaction for several vehicles. The customer complaints have been for grind noise, grunt and groan. The team focused on a multi-level integrated approach for this problem. The first step was deep diving and dissecting the customer complaint data. The low frequency noise for grind and groan can be reduced to several contributors. One of the main issues was the movement of pads over the rotor fins resulting in dynamic groan type of noise. It was important to relate this to the customer complaint for grind. In association with that, the grind noise was also caused by in-stop grunt type of noise.
Technical Paper

Potential for Commonization of Brake Testing for Globally Marketed Vehicles

2009-10-11
2009-01-3031
From the brake system point of view the world can be split into comfort and performance markets. This market split evolved historically and reflects local legal requirements, driving style and the customer expectations. Noise, cold judder and brake dust play the dominant role in the perception of the customer on the comfort market. The performance markets call for high friction level and good fade performance. Currently these customer needs can only be satisfied by usage of different pad materials: NAO and Semi Met materials for comfort markets and generally Low Met materials for performance markets. Due to the differences mentioned above, additional brake system development and testing is done (different testing locations for the same brake attribute). Harmonizing testing, usage of the same test location and same test method could save not only the human resources but also decrease the number of prototypes used in the development phases.
Technical Paper

On Automotive Disc Brake Squeal Part II: Simulation and Analysis

2003-03-03
2003-01-0684
This paper reviews the state of the art of CAE simulation and analysis methods on disc brake squeal. It covers complex modes analysis, transient analysis, parametrical analysis, and operational simulation. The advantages and limitations of each analysis method are discussed. This review can help analysts to choose right methods and decide new lines of method development. For completeness, analytic methods dealing with continuum models are also briefly covered. This review was made from those papers that the authors are familiar with. It is not meant to be all-inclusive even though the best possible effort has been attempted.
Technical Paper

Nonlinear Brake Squeal Analysis

2002-11-18
2002-01-3138
Brake squeal noise is a top warranty concernsmplaints for virtually all automotive companies. How to identify squeal frequencies and mode shapes is typically very challenging. The identification of potential squeal problems still rely heavily on experimental methods using inertia and chassis dynamometers or on-road tests, but these require hardware to run. Good numerical methods have advantages of evaluating up-front designs before the cutting tools ever hit any metal. But for brake squeal, there are still many challenges to overcome to correctly model a complete brake system due to the nature of the complexity of the frictional excitation. In this paper, a disc brake system model was established to simulate brake squeal using nonlinear transient analysis methods provided through LS-DYNA. The model includes rotor, pads, linings, caliper and pistons. From the example analyzed, the squeal frequency is identified using frequency domain analysis of the numerical time-domain output.
Technical Paper

Noise Source Identification Using Phase Analysis

2010-10-17
2010-36-0543
Noise source identification has been a subject well studied in the past few years. Automobile manufactures along with specialized supplies have been developed some methods in this matter. The importance of such subject is quite obvious, especially in the auto industry: identify potential problems and point out solutions for NVH. There are several methods of noise source identification widely used. Among them, one can mention "Hotspot Search," which consists of noise intensity measurement, mapping and ranking the relative contribution of each substructure of one body. Another method used, one can point out is the STSF (Spatial Transformation of Sound Fields). It consists of a measurement over a scan plane using a set of microphone array. In this way, a 2D sound field can be transformed in a 3D description and source direction can be identified.
X