Refine Your Search

Topic

Author

Search Results

Technical Paper

Vibration Comfort Control for HEV Based on Machine Learning

2014-06-30
2014-01-2091
Hybrid electric vehicles (HEVs) with a power-split system offer a variety of possibilities in reduction of CO2 emissions and fuel consumption. Power-split systems use a planetary gear sets to create a strong mechanical coupling between the internal combustion engine, the generator and the electric motor. This concept offers rather low oscillations and therefore passive damping components are not needed. Nevertheless, during acceleration or because of external disturbances, oscillations which are mostly influenced by the ICE, can still occur which leads to a drivability and performance downgrade. This paper proposes a design of an active damping control system which uses the electric motor to suppress those oscillations instead of handling them within the ICE control unit. The control algorithm is implemented as part of an existing hybrid controller without any additional hardware introduced.
Technical Paper

Transient Numerical Analysis of a Dissipative Expansion Chamber Muffler

2024-06-12
2024-01-2935
Expansion chamber mufflers are commonly applied to reduce noise in HVAC. Dissipative materials, such as microperforated plates (MPPs), are often applied to achieve a more broadband mitigation effect. Such mufflers are typically characterized in the frequency domain, assuming time-harmonic excitation. From a computational point of view, transient analyses are more challenging. A transformation of the equivalent fluid model or impedance boundary conditions into the time domain induces convolution integrals. We apply the recently proposed finite element formulation of a time domain equivalent fluid (TDEF) model to simulate the transient response of dissipative acoustic media to arbitrary unsteady excitation. As most time domain approaches, the formulation relies on approximating the frequency-dependent equivalent fluid parameters by a sum of rational functions composed of real-valued or complex-conjugated poles.
Technical Paper

Thermodynamic Limits of Efficiency Enhancement of Small Displacement Single-Cylinder Engines

2015-11-17
2015-32-0817
Millions of small displacement single-cylinder engines are used for the propulsion of scooters, motorcycles, small boats and others. These SI-engines represent the basis of an affordable mobility in many countries, but at the same time their efficiency is quite low. Today, the limited fossil fuel resources and the anthropogenic climate require a sustainable development of combustion engines, the reduction of fuel consumption being an important factor. A variety of different strategies (turbo-charging, cylinder deactivation, direct injection, etc.) are investigated here to increase the efficiency of multi-cylinder engines. In the case of small displacement single-cylinder engines, other strategies are required because of their special design and the high pressure on costs. In the context of this paper different layout parameters which have an influence on the working process are investigated, with the aim of increasing the efficiency of small displacement single-cylinder engines.
Technical Paper

The Patch-Transfer-Function (PTF) Method Applied to Numerical Models of Trim Materials Including Poro-Elastic Layers

2018-06-13
2018-01-1569
In automotive industry, acoustic trim materials are widely used in order to reach passenger comfort targets. The dynamic behavior of the poro-elastic materials is typically modelled by the Biot theory, which however leads to expensive numerical finite element calculations. One way to deal with it is to use the Patch-Transfer-Function (PTF) sub-structuring method, which couples subdomains at their interfaces through impedance relations. This was done already for systems including locally reacting poro-elastic materials. In this paper, a methodology is presented allowing to numerically assess the PTF impedance matrices of non-locally reacting trim materials using the Biot based poro-elastic model solved by the finite element method (FEM). Simplifications of the trim impedance matrices are introduced resulting in considerable calculation cost reductions. The associated prediction errors are discussed by means of a numerical case study.
Technical Paper

Technologies to Achieve Future Emission Legislations with Two Stroke Motorcycles

2018-10-30
2018-32-0042
Increasingly stringent emission regulations force manufacturers of two wheelers to develop low emission motorcycle concepts. Especially for small two-stroke engines with symmetrical port timing structure, causing high HC-emissions due to scavenge losses, this is a challenging demand that can only be met with alternative mixture formation strategies and by intensifying the use of modern development tools. Changing from EU4 to EU5, emission legislation will not only have an impact on the improvement of internal combustion but will also drastically change the after-treatment system. Nowadays, small two-stroke engines make use of a simple carburetor for external mixture preparation. The cylinders are scavenged by air/fuel mixtures. Equipped with exhaust gas after-treatment systems, such as secondary air with two or three catalytic converters, the emission limits for EURO 4 homologation can be achieved with carbureted engines.
Technical Paper

Systematic Experimental Creep Groan Characterization Using a Suspension and Brake Test Rig

2017-09-17
2017-01-2488
Vehicle road tests are meaningful for investigations of creep groan noise. However, problems in reproducing experiments and partly subjective evaluations may lead to imprecise conclusions. This work proposes an experimental test and evaluation procedure which provides a precise and objective assessment of creep groan. It is based on systematic corner test rig experiments and an innovative characterization method. The exemplary setup under investigation consisted of a complete front wheel suspension and brake system including all relevant components. The wheel has been driven by the test rig’s drum against a brake torque. The main parameters within a test matrix were brake pressure and drum velocity. Both have been varied stepwise to scan the relevant operating range of the automobile corner system for potential creep groan noise. Additionally, the experiments were extended to high brake pressures, where creep groan cannot be observed under road test conditions.
Technical Paper

System Design Model for Parallel Hybrid Powertrains using Design of Experiments

2018-04-03
2018-01-0417
The paper focuses on an optimization methodology, which uses Design of Experiments (DoE) methods to define component parameters of parallel hybrid powertrains such as number of gears, transmission spread, gear ratios, progression factor, electric motor power, electric motor nominal speed, battery voltage and cell capacity. Target is to find the optimal configuration based on specific customer targets (e.g. fuel consumption, performance targets). In the method developed here, the hybrid drive train configuration and the combustion engine are considered as fixed components. The introduced methodology is able to reduce development time and to increase output quality of the early system definition phase. The output parameters are used as a first hint for subsequently performed detailed component development. The methodology integrates existing software tools like AVL CRUISE [5] and AVL CAMEO [1].
Journal Article

Sulfur Poisoning of a NOx Storage Catalyst - A Comprehensive Modelling Approach

2016-04-05
2016-01-0964
This paper describes the development of a 0-D-sulfur poisoning model for a NOx storage catalyst (NSC). The model was developed and calibrated using findings and data obtained from a passenger car diesel engine used on testbed. Based on an empirical approach, the developed model is able to predict not only the lower sulfur adsorption with increasing temperature and therefore the higher SOx (SO2 and SO3) slip after NSC, but also the sulfur saturation with increasing sulfur loading, resulting in a decrease of the sulfur adsorption rate with ongoing sulfation. Furthermore, the 0-D sulfur poisoning model was integrated into an existing 1-D NOx storage catalyst kinetic model. The combination of the two models results in an “EAS Model” (exhaust aftertreatment system) able to predict the deterioration of NOx-storage in a NSC with increasing sulfation level, exhibiting higher NOx-emissions after the NSC once it is poisoned.
Technical Paper

Strategies for Emission Reduction on Small Capacity Two-Wheelers with Regard to Future Legislative Limits

2014-11-11
2014-32-0031
Looking at upcoming emission legislations for two-wheelers, it is quite obvious that the fulfilment of these targets will become one of the biggest challenges within the engine development process. The gradual harmonization of emission limits for two-wheelers with existing automotive standards will subsequently lead to new approaches regarding mixture preparation and exhaust gas aftertreatment. Referring to these future scenarios, a state-of-the-art in development of catalytic converters for two- or three-wheeler applications should be presented. After choosing a suitable test carrier, which has already been equipped with EFI components including an oxygen sensor for λ=1 operation mode, a basic injection system calibration was used to optimize the combustion process. Based on this setup, a variable exhaust system was manufactured to be able to integrate different catalyst configurations.
Journal Article

Simulation of the Dynamical Behavior of Elastic Multi-Body Systems with Bolted, Rough Contact Interfaces

2010-06-09
2010-01-1422
For many technical applications it is necessary to avoid or to reduce vibrations. Factors benefiting from vibration reduction are for example the durability of the application, which is increased, as well as cost expenses and the level of noise, which are both decreased. Rough, bolted interfaces are common in most machines and can be used as damping devices with some effort. Perhaps in future such contact surfaces could be used as damping devices at the interfaces of an automotive engine or exhaust system. Nevertheless it is difficult to predict the effect of a change in contact interface parameters on the dynamic behavior of the entire mechanical system. Therefore a method for calculating the steady state behavior of elastic multi-body systems was developed. The basis of this method is a finite element model of each contacting unit. On each model a modal reduction is applied in order to reduce the degrees of freedom.
Technical Paper

Results, Assessment and Legislative Relevance of RDE and Fuel Consumption Measurements of Two-Wheeler-Applications

2017-11-05
2017-32-0042
The reduction of environmentally harmful gases and the ambitions to reduce the exploitation of fossil resources lead to stricter legislation for all mobile sources. Legislative development significantly affected improvements in emissions and fuel consumptions over the last years, mainly measured under laboratory conditions. But real world operating scenarios have a major influence on emissions and it is already well known that these values considerably differ from officially published figures [1]. There are regulated emissions by the European Commission by means of real driving scenarios for passenger cars. A methodology to measure real drive emissions RDE is therefore well approved for automotive applications but was not adapted for two-wheeler-applications yet [2]. Hence measurements have been performed on-road and on chassis dynamometer for motorcycles with the state of the art RDE measurement equipment to be prepared for possible future legislation.
Technical Paper

Reduction of Flow-induced Noise in Refrigeration Cycles

2024-07-02
2024-01-2972
In electrified vehicles, auxiliary units can be a dominant source of noise, one of which is the re-frigerant scroll compressor. Compared to vehicles with combustion engines, e-vehicles require larger refrigerant compressors, as in addition to the interior, also the battery and the electric motors have to be cooled. Currently, scroll compressors are widely used in the automotive industry, which generate one pressure pulse per revolution due to their discontinuous compression principle. This results in speed-dependent pressure fluctuations as well as higher-harmonic pulsations that arise from reflections. These fluctuations spread through the refrigeration circuit and cause the vibration excitation of refrigerant lines and heat exchangers. The sound transmission path in the air con-ditioning heat exchanger integrated in the dashboard is particularly critical. Various silencer con-figurations can be used to dampen these pulsations.
Technical Paper

Real World Operation of a Standard Lawn Mower Engine from a Scientific Perspective

2013-10-15
2013-32-9124
This paper introduces a research project on a spark ignition engine used in non-road applications. The aim is to illustrate the present situation as basis for comparison and to identify possible improvement potential in terms of performance, efficiency or exhaust and noise emissions. The study is carried out in two steps. First a standard walk-behind lawn mower is equipped with measuring instrumentation for recording the cutting forces and the engine variables during real world operation. The tests are carried out on three different lawn types and two different blade types are investigated. Consequently, in a second step the engine is analysed on the engine test bench in stationary and transient operating mode. A complete engine mapping is done regarding all relevant variables. Additionally to the outdoor tests, fuel consumption and engine out emissions are measured on the engine dynamometer. The recorded data enables a detailed analysis of the engine behaviour.
Technical Paper

Practicability and Influencing Factors of a Lean Burn Mode for Two-Stroke Engines in Hand-Held Powertools

2017-11-05
2017-32-0043
For many applications, such as scooters, hand-held power tools and many off-road vehicles, two-stroke engines are used as a preferred propulsion unit. These engines convince by a good power to weight ratio, a high durability and low maintenance technology and are therefore the first choice in this field of application. In general, already much development effort has been expended to improve those systems. However, an increasing environmental awareness, the protection of health and the shortage of fossil resources are the driving factors to further enhance the internal combustion process of those adapted two-stroke engines. The current focus here is on the reduction of emissions and fuel consumption with an at least constant power output. An approach to address an improvement of engine efficiency can be covered by applying a lean combustion burn mode.
Technical Paper

Potential for Particulate Reduction by Use of eFuels in MPFI Engines

2023-10-24
2023-01-1848
Currently, emission regulations for the LVs using standard spark ignited ICEs considering only gaseous pollutants, just as CO, HC and NOx. Following the upcoming legislation for personal vehicles sector, the LVs might also include limits of PN and PM. Regarding fuel injection strategies, the MPFI which was previously excluded from particulate control will be incorporated into the new regulation [1]. In terms of social harm, there will be a necessity to reduce engine particulate emissions, as they are known for being carcinogenic substances [2, 3, 4]. Generally, the smaller the particulate diameter, the more critical are the damages for human health therefore, the correct determination of PN and particulate diameter is essential. Beside future challenges for reducing and controlling particulates, the reduction of fossil fuel usage is also an imminent target, being the replacement by eFuels one of the most promising alternatives.
Technical Paper

Overview of Different Gas Exchange Concepts for Two-Stroke Engines

2018-10-30
2018-32-0041
The concept of a loop scavenged two-stroke engine, controlling the intake and exhaust port by the moving piston, is a proven way to realize a simple and cheap combustion engine. But without any additional control elements for the gas exchange this concept quickly reaches its limits for current emission regulations. In order to fulfil more stringent emission and fuel consumption limits with a two-stroke engine, one of the most important measures is to avoid scavenging losses of fuel and oil. Additionally, it is necessary to follow a lambda = 1 concept for a 3-way exhaust gas after-treatment. Therefore, using internal mixture preparation systems in combination with different concepts to control the gas exchange process, the two-stroke engine could become a choice for automotive applications, especially as a Range Extender in a Plugin Hybrid Electric Vehicle (PHEV).
Technical Paper

Numerical and Experimental Parameter Studies on Brake Squeal

2010-10-10
2010-01-1712
This paper deals with the analysis of a complete axle of a passenger car, which shows brake squeal in test runs. The complete brake system including the parts of the corner is studied with two different Finite Element Analysis programs and their brake squeal calculation algorithms. Thereby significant differences between the results of the two simulations and also the experiments are observed. The used element type and the chosen discretisation level influence largely the simulated contact and thereby the overall results. In order to explain these outcomes, the force distribution and the force vectors between disc and pad are analysed. On the one hand tetrahedral elements cause stiffening of the parts and hence of the contact. On the other hand the effort to create hexahedral elements in daily meshing practice is often omitted due to cost reasons. This trend is enforced by the statement of software vendors.
Journal Article

Modular Fault Diagnosis System for Engine Test Bed Measurements

2017-03-28
2017-01-0386
To achieve high power output and good efficiency and to comply with increasingly stricter emission standards, modern combustion engines require a more complex engine design, which results in a higher number of control parameters. As the measurement effort and the number of sensors for engine development at the test bed continue to increase, it is becoming nearly impossible for the test bed engineer to manually check measurement data quality. As a result, automated methods for analysis and plausibility checks of measurement data are necessary in order to find faults as soon as they occur and to obtain test results of the highest possible quality. This paper presents a methodology for automated fault diagnosis on engine test beds. The methodology allows reliable detection of measurement faults as well as the identification of the root cause of faults.
Technical Paper

Methodology for Automated Fault Diagnosis at Engine Test Beds

2017-01-10
2017-26-0326
Experimental investigations on engine test beds represent a significant cost in engine development. To reduce development time and related costs, it is necessary to check the quality of measurements automatically whenever possible directly on the test bed to allow early detection of faults. A fault diagnosis system should provide information about the presence, cause and magnitude of an inconsistency in measurement. The main challenge in developing such a system is to detect the fault quickly and reliably. However, only faults that have actually occurred should be detected because the user will only adopt a system that provides accurate results. This paper presents a methodology for automated fault diagnosis at engine test beds, starting with an explanation of the general procedure. Next, the methods applied for fault detection are introduced.
Technical Paper

Mechanical Design of In-Wheel Motor Driven Vehicles with Torque-Vectoring

2011-10-04
2011-36-0132
Volatile oil prices and increased environmental sensitivity together with political concerns have moved the attention of governments, automobile manufacturers and customers to alternative power trains. From the actual point of view the most promising concepts for future passenger cars are based on the conversion of electrical into mechanical energy. In-wheel motors are an interesting concept towards vehicle electrification that provides also high potentials to improve vehicle dynamics and handling. Beside aspects concerning the electric system (e.g. motor type, energy storage, and control strategy), there are also some open questions related with the mechanical design of in-wheel motor driven vehicles that need to be solved before series production.
X