Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Utilizing Intake-Air Oxygen-Enrichment Technology to Reduce Cold-Phase Emissions

Oxygen-enriched combustion is a proven, seriously considered technique to reduce exhaust hydrocarbons (HC) and carbon monoxide (CO) emissions from automotive gasoline engines. This paper presents the cold-phase emissions reduction results of using oxygen-enriched intake air containing about 23% and 25% oxygen (by volume) in a vehicle powered by a spark-ignition (SI) engine. Both engine-out and converter-out emissions data were collected by following the standard federal test procedure (FTP). Converter-out emissions data were also obtained employing the U.S. Environmental Protection Agency's (EPA's) “Off-Cycle” test. Test results indicate that the engine-out CO emissions during the cold phase (bag 1) were reduced by about 46 and 50%, and HC by about 33 and 43%, using nominal 23 and 25% oxygen enriched air compared to ambient air (21% oxygen by volume), respectively. However, the corresponding oxides of nitrogen (NOx) emissions were increased by about 56 and 79%, respectively.
Technical Paper

The Potential Benefits of Intake Air Oxygen Enrichment in Spark Ignition Engine Powered Vehicle

A production spark ignition engine powered vehicle (3.1-L Chevrolet Lumina, model year 1990) was tested with oxygen-enriched intake air containing 25 and 28% oxygen by volume to determine if (1) the vehicle would run without difficulties and (2) there would be emissions benefits. Standard Federal Test Procedure (FTP) emissions test cycles were run satisfactorily without vehicle performance anomalies. The results of catalytic converter-out (engine with a three-way catalytic converter in place) emissions showed that both carbon monoxide and hydrocarbons were reduced significantly in all three phases of the emissions test cycle, compared with normal air (21 % oxygen). Carbon monoxide emissions from the engine (with the three-way catalytic converter removed) were significantly reduced in the cold-phase of the test cycle. The catalytic converter also had an improved carbon monoxide conversion efficiency under the oxygen-enriched air conditions.
Technical Paper

The Effects of Oxygen-Enriched Intake Air on FFV Exhaust Emissions Using M85

This paper presents the results of emission tests of a flexible fuel vehicle (FFV) powered by an SI engine, fueled by M85, and supplied with oxygen-enriched intake air containing nominal 21%, 23%, and 25% oxygen (by volume). Emission data were collected by following the standard federal test procedure (FTP) and U.S. Environmental Protection Agency's (EPA's) “off-cycle” test EPA-REP05. Engine-out total hydrocarbons (THCs) and unburned methanol were considerably reduced in the entire FTP cycle when the oxygen content of the intake air was either 23% or 25%. However, CO emissions did not vary appreciably, and NOx emissions were higher. Formaldehyde emissions were reduced by about 53% in bag 1, 84% in bag 2, and 59% in bag 3 of the FTP cycle when 25% oxygen-enriched intake air was used.
Technical Paper

Testing Hybrid Electric Vehicle Emission and Fuel Economy at the 1994 DOE/SAE Hybrid Electric Vehicle Challenge

From June 12-20, 1994, an engineering design competition called the 1994 Hybrid Electric Vehicle (HEV) Challenge was held in Southfield, Michigan. This collegiate-level competition, which involved 36 colleges and universities from across North America, challenged the teams to build a superior HEV. One component of this comprehensive competition was the emissions event. Special HEV testing procedures were developed for the competition to find vehicle emissions and correct for battery state-of-charge while fitting into event time constraints. Although there were some problems with a newly-developed data acquisition system, we were able to get a full profile of the best performing vehicles as well as other vehicles that represent typical levels of performance from the rest of the field. This paper will explain the novel test procedures, present the emissions and fuel economy results, and provide analysis of second-by-second data for several vehicles.
Technical Paper

Technical Analysis of the 1994 HEV Challenge

The 1994 Hybrid Electric Vehicle Challenge provided the backdrop for collecting data and developing testing procedures for hybrid electric vehicle technology available at colleges and universities across North America. The data collected at the competition was analyzed using the HEV definitions from the draft SAE J1711 guidelines. The energy economy, percentage of electrical to total energy used, and acceleration performance was analyzed for any correlation between the over-the-road data and the commuter-sustaining, commuter-depleting, and reserve-sustaining hybrid vehicles. The analysis did not provide any direct correlation between over-the-road data and the three hybrid types. The analysis did show that the vehicle configurations provide the best information on vehicle performance. It was also clear that a comprehensive data analysis system along with a well-defined testing procedure would allow for a more complete analysis of the data.
Technical Paper

HEV Dynamometer Testing with State-of-Charge Corrections in the 1995 HEV Challenge

In the 1995 HEV Challenge competition, 17 prototype Hybrid Electric Vehicles (HEVs) were tested by using special HEV test procedures. The contribution of the batteries during the test, as measured by changes in battery state-of-charge (SOC), were accounted for by applying SOC corrections to the test data acquired from the results of the HEV test. The details of SOC corrections are described and two different HEV test methods are explained. The results of the HEV test methods are explained. The results of the HEV tests and the effects on the test outcome of varying HEV designs and control strategies are examined. Although many teams had technical problems with their vehicles, a few vehicles demonstrated high fuel economy and low emissions. One vehicle had emissions lower than California's ultra-low emission vehicle (ULEV) emissions rates, and two vehicles demonstrated higher fuel economy and better acceleration than their stock counterparts.
Technical Paper

Effects of Fuel Parameters on FTP Emissions of a 1998 Toyota with a Direct Injection Spark Ignition Engine

The effects of fuel properties on the emissions of a production vehicle with a gasoline direct injection engine operating over the Federal Test Procedure (FTP) cycle were investigated. The vehicle used was a 1998 Toyota Corona passenger car with a direct injection spark ignition (DISI) engine. Engine-out and tailpipe FTP emissions for six fuels and a California Phase 2 RFG reference fuel are presented. Four of the test fuels were blended from refinery components to meet specified distillation profiles. The remaining test fuels were iso-octane and toluene, an iso-alkane and an aromatic with essentially the same boiling point (at atmospheric pressure) that is near the T50 point for the blended fuels. Statistically significant effects, at the 95% confidence level, of the fuels on tailpipe emissions were found. Correlations were sought between the properties of the five blends and the Emissions Indices for engine-out hydrocarbons and NOx and for tailpipe particulates.
Technical Paper

Effect of Fuel Parameters on Speciated Hydrocarbon Emissions from a Direct Injection Spark Ignition Engine

A 1998 Toyota Corona passenger car with a direct injection spark ignition (DISI) engine was tested over the Federal Test Procedure (FTP) driving cycle. Speciated engine-out hydrocarbon emissions were measured. Seven fuels were used for these tests: five blended fuels and two pure hydrocarbon fuels. One of the blended fuels was CARB Phase 2 reformulated gasoline which was used as the reference fuel. The remaining four blended fuels were made from refinery components to meet specified distillation profiles. The pure hydrocarbon fuels were iso-octane and toluene - an alkane and an aromatic with essentially identical boiling points. The five blended fuels can be grouped to examine the effects of fuel volatility and MTBE. Additionally, correlations were sought between the fuel properties and the Specific Reactivity, the exhaust “toxics”, and the pass-through of unburned fuel species.