Refine Your Search

Topic

Author

Search Results

Technical Paper

Variable Pressure Insulating Jackets for High-Temperature Batteries

1992-08-03
929017
A new method is proposed for controlling the temperature of high-temperature batteries namely, varying the hydrogen pressure inside of multifoil insulation by varying the temperature of a reversible hydrogen getter. Calculations showed that the rate of heat loss through 1.5 cm of multifoil insulation between a hot-side temperature of 425°C and a cold-side temperature of 25°C could be varied between 17.6 W/m2 and 7,000 W/m2. This change in heat transfer rate can be achieved by varying the hydrogen pressure between 1.0 Pa and 1000 Pa, which can be done with an available hydrogen gettering alloy operating in the range of 50°C to 250°C. This approach to battery cooling requires cylindrical insulating jackets, which are best suited for bipolar batteries having round cells approximately 10 to 18 cm in diameter.
Technical Paper

Validation of a Model and Development of a Simulator for Predicting the Pressure Drop of Diesel Particulate Filters

2001-03-05
2001-01-0911
As demand for wall-flow Diesel Particulate Filters (DPF) increases, accurate predictions of DPF behavior, and in particular their pressure drop, under a wide range of operating conditions bears significant engineering applications. In this work, validation of a model and development of a simulator for predicting the pressure drop of clean and particulate-loaded DPFs are presented. The model, based on a previously developed theory, has been validated extensively in this work. The validation range includes utilizing a large matrix of wall-flow filters varying in their size, cell density and wall thickness, each positioned downstream of light or heavy duty Diesel engines; it also covers a wide range of engine operating conditions such as engine load, flow rate, flow temperature and filter soot loading conditions. The validated model was then incorporated into a DPF pressure drop simulator.
Technical Paper

Two-Input Two-Output Control of Blended Fuel HCCI Engines

2013-04-08
2013-01-1663
Precise cycle-to-cycle control of combustion is the major challenge to reduce fuel consumption in Homogenous Charge Compression Ignition (HCCI) engines, while maintaining low emission levels. This paper outlines a framework for simultaneous control of HCCI combustion phasing and Indicated Mean Effective Pressure (IMEP) on a cycle-to-cycle basis. A dynamic control model is extended to predict behavior of HCCI engine by capturing main physical processes through an HCCI engine cycle. Performance of the model is validated by comparison with the experimental data from a single cylinder Ricardo engine. For 60 different steady state and transient HCCI conditions, the model predicts the combustion phasing and IMEP with average errors less than 1.4 CAD and 0.2 bar respectively. A two-input two-output controller is designed to control combustion phasing and IMEP by adjusting fuel equivalence ratio and blending ratio of two Primary Reference Fuels (PRFs).
Technical Paper

The Study of the Effect of Exhaust Gas Recirculation on Engine Wear in a Heavy-Duty Diesel Engine Using Analytical Ferrography

1986-03-01
860378
A study was undertaken to investigate the affect of exhaust gas recirculation (EGR) on engine wear and lubricating oil degradation in a heavy duty diesel engine using a newly developed methodology that uses analytical ferrography in conjunction with short term tests. Laboratory engine testing was carried out on a Cummins NTC-300 Big Cam II diesel engine at rated speed (1800 RPM) and 75% rated load with EGR rates of 0, 5, and 15% using a SAE 15W40 CD/SF/EO-K oil. Dynamometer engine testing involved collecting oil samples from the engine sump at specified time intervals through each engine test. These oil samples were analyzed using a number of different oil analysis techniques that provide information on the metal wear debris and also on the lubricating oil properties. The results from these oil analysis techniques are the basis of determining the effect of EGR on engine wear and lubricating oil degradation, rather than an actual engine tear down between engine tests.
Technical Paper

The Prospects for Electric/Hybrid Vehicles, 2000-2020: First-Stage Results of a Two-Stage Delphi Study

1995-08-01
951907
A two-stage Delphi study was conducted to collect expert opinion concerning long-term (2000-2020) technical and economic attributes of electric (EV) and hybrid-electric (HEV) vehicles in comparison to conventional gasoline vehicles. The study questionnaire was divided into three parts: the first addressed vehicles; the second, vehicle components; and the third, the impact on the transportation system of electric and hybrid vehicle use. This paper reports selected results from the first round of the survey. This international survey obtained information from 191 expert respondents in the automotive-technology field. The experts' skills predominantly reflected specialization in electric drivetrain vehicles and/or components.
Technical Paper

The Potential Benefits of Intake Air Oxygen Enrichment in Spark Ignition Engine Powered Vehicle

1993-10-01
932803
A production spark ignition engine powered vehicle (3.1-L Chevrolet Lumina, model year 1990) was tested with oxygen-enriched intake air containing 25 and 28% oxygen by volume to determine if (1) the vehicle would run without difficulties and (2) there would be emissions benefits. Standard Federal Test Procedure (FTP) emissions test cycles were run satisfactorily without vehicle performance anomalies. The results of catalytic converter-out (engine with a three-way catalytic converter in place) emissions showed that both carbon monoxide and hydrocarbons were reduced significantly in all three phases of the emissions test cycle, compared with normal air (21 % oxygen). Carbon monoxide emissions from the engine (with the three-way catalytic converter removed) were significantly reduced in the cold-phase of the test cycle. The catalytic converter also had an improved carbon monoxide conversion efficiency under the oxygen-enriched air conditions.
Technical Paper

The Performance of a Spark-Ignited Stratified-Charge Two Stroke Engine Operating on a Kerosine Based Aviation Fuel

1997-09-08
972737
This study examines the feasibility of broadening the fuel capabilities of a direct-injected two-stroke engine with stratified combustion. A three cylinder, direct-injected two-stroke engine was modified to operate on JP-5, a kerosene-based jet fuel that is heavier, more viscous, and less volatile than gasoline. Demonstration of engine operation with such a fuel after appropriate design modifications would significantly enhance the utilization of this engine in a variety of applications. Results have indicated that the performance characteristics of this engine with jet fuel are similar to that of gasoline with respect to torque and power output at low speeds and loads, but the engine's performance is hampered at the higher speeds and loads by the occurrence of knock.
Technical Paper

The Natural Gas Vehicle Challenge '92: Exhaust Emission Testing and Results

1992-10-01
922387
The Natural Gas Vehicle (NGV) Challenge '92, was organized by Argonne National Laboratory. The main sponsors were the U.S. Department of Energy the Energy, Mines, and Resources - Canada, and the Society of Automotive Engineers. It resulted in 20 varied approaches to the conversion of a gasoline-fueled, spark ignited, internal combustion engine to dedicated natural gas use. Starting with a GMC Sierra 2500 pickup truck donated by General Motors, teams of college and university student engineers worked to optimize Chevrolet V-8 engines operating on natural gas for improved emissions, fuel economy, performance, and advanced design features. This paper focuses on the results of the emission event, and compares engine mechanical configurations, engine management systems, catalyst configurations and locations, and approaches to fuel control and the relationship of these parameters to engine out and tailpipe emissions of regulated exhaust constituents.
Technical Paper

The Influence of an Oxidation Catalytic Converter and Fuel Composition on the Chemical and Biological Characteristics of Diesel Exhaust Emissions

1992-02-01
920854
The U.S. Bureau of Mines and Michigan Technological University are collaborating to conduct laboratory evaluations of oxidation catalytic converters (OCCs) and diesel fuels to identify combinations which minimize potentially harmful emissions. The purpose is to provide technical information concerning diesel exhaust emission control to the mining industry, regulators, and vendors of fuel and emission control devices. In this study, an Engelhard PTX 10 DVC (Ultra-10)* OCC was evaluated in the exhaust stream of an indirect injection Caterpillar 3304 PCNA mining engine using a light-duty laboratory transient cycle. This cycle was selected because it causes high emissions of particle-associated organics. Results are also reported for two different fuels with similar sulfur contents (0.03-0.04 wt pct) and a cetane number of 53, but different aromatic contents (11 vs. 20 wt pct).
Technical Paper

The Engineering Control of Diesel Pollutants in Underground Mining

1981-04-01
810684
A review of mine air pollutant standards and the important pollutants to control in underground mines using diesel powered equipment is presented. The underground Mine Air Quality Laboratory instrumentation is discussed. This includes the Mine Air Monitoring Laboratory (MAML) and the instrumented Load Haul Dump (LHD) vehicle. The MAML measures CO, NO2, NO, CO2, particulate and temperatures while the LHD instrumentation measures and records engine speed, rack position (fuel rate), vehicle speed, CO2 concentration, exhaust temperature and operating mode with transducers and a Sea Data Corporation data logging and reader system. The mine LHD cycle data are related to the EPA 13 mode cycle data. Engine and aftertreatment emission control methods are reviewed including recent laboratory NO, NO2, sulfate and particulate data for a monolith catalyst. Maintenance of the LHD vehicle by engine subsystems in relation to component effects on emissions is presented.
Technical Paper

The Effects of Oxygenated Biofuel on Intake Oxygen Concentration, EGR, and Performance of a 1.9L Diesel Engine

2010-04-12
2010-01-0868
Exhaust gas recirculation (EGR) has been employed in a diesel engine to reduce NOx emissions by diluting the fresh air charge with gases composed of primarily N2, CO2, H2O, and O2 from the engines exhaust stream. The addition of EGR reduces the production of NOx by lowering the peak cylinder gas temperature and reducing the concentration of O2 molecules, both of which contribute to the NOx formation mechanism. The amount of EGR has been typically controlled using an open loop control strategy where the flow of EGR was calibrated to the engine speed and load and controlled by the combination of an EGR valve and the ratio of the boost and exhaust back pressures. When oxygenated biofuels with lower specific energy are used, the engine control unit (ECU) will demand a higher fuel rate to maintain power output, which can alter the volumetric flow rate of EGR. In addition, oxygenated biofuels affect the oxygen concentration in the intake manifold gas stream.
Technical Paper

The Effect of a Ceramic Trap on Diesel Particulate: Fractions

1986-03-01
860620
A study of the Corning ceramic diesel particulate trap was conducted to investigate the trap's overall effect on diesel particulate fractions (soluble organic fraction. SOF; solid fraction, SOL; and sulfate fraction. SO4) under four different engine loads at 1680 rpm. The trap was found to filter the SOL fraction most efficiently with the SOF and SO4 fraction following in respective order. The filter efficiency of all fractions increased with increasing engine load. Graphs illustrating filter efficiency versus engine load indicate the slope of the SOF filter efficiency was smaller in magnitude than the TPM and SOL and SO4, fractions, which had similar slopes. The different slope of the SOF filter efficiency indicates other influences may be involved with the reduction in the SOF through the trap. Particle size distribution measurements in diluted exhaust revealed particle formation downstream of the trap.
Technical Paper

The Effect of Truck Dieselization on Fuel Usage

1981-02-01
810022
The effect of truck dieselization for three levels of diesel penetration into each of the eight classes of trucks is modeled. Diesel and total truck sales, population, mileage and yearly fuel usage data are aggregated by four truck classes representing light, medium, light-heavy and heavy-heavy classes. Four fuel economy scenario's for different technological improvements were studied. Improvement of fuel economy for light and heavy-heavy duty vehicle classes provides significant total fuel savings. Truck dieselization of light and light-heavy duty vehicle classes provides the largest improvement of fuel usage due to the fact that they have large numbers of vehicles and presently have few diesels. Total car and truck fuel usage in the 1980's shows roughly a constant demand with cars decreasing due to improved new fleet fuel economy and trucks increasing due to a larger population with better fuel economy due to dieselization and improved technology.
Technical Paper

The Effect of Fuel and Engine Design on Diesel Exhaust Particle Size Distributions

1996-02-01
960131
The objective of this research was to obtain diesel particle size distributions from a 1988 and a 1991 diesel engine using three different fuels and two exhaust control technologies (a ceramic particle trap and an oxidation catalytic converter). The particle size distributions from both engines were used to develop models to estimate the composition of the individual size particles. Nucleation theory of the H2O and H2SO4 vapor is used to predict when nuclei-mode particles will form in the dilution tunnel. Combining the theory with the experimental data, the conditions necessary in the dilution tunnel for particle formation are predicted. The paper also contains a discussion on the differences between the 1988 and 1991 engine's particle size distributions. The results indicated that nuclei mode particles (0.0075-0.046 μm) are formed in the dilution tunnel and consist of more than 80% H2O-H2SO4 particles when using the 1988 engine and 0.29 wt% sulfur fuel.
Technical Paper

The Development and Application of Ferrography to the Study of Diesel Engine Wear

1978-02-01
780181
This paper covers the development of Ferrographic oil analysis techniques for the study of diesel engine wear. A brief overview of the various wear analysis techniques now commonly used in laboratory and field engine wear studies is discussed. Also included in this paper is an in depth description of the Ferrographic oil analysis techniques and the various applications of the techniques to the study of engine wear. A comparison of the commonly used wear measurement methods, Ferrography, spectroscopy and the radioactive tracer methods, and their abilities to measure wear is also discussed. A direct injection, 4-cycle, turbocharged diesel engine was used in the testing and data are presented indicating the abilities of the Ferrographic oil analysis techniques to detect changes in wear rates. The effects of operating time on engine oil and the effects of the variation of oil and coolant temperatures on engine wear is presented.
Technical Paper

The 1995 HEV Challenge: Results and Technology Summary

1996-02-01
960741
The objective of this paper is to analyze and summarize the performance results and the technology used in the 1995 Hybrid Electric Vehicle (HEV) Challenge. Government and industry are exploring hybrid electric vehicle technology to significantly improve fuel economy and reduce emissions of the vehicles without sacrificing performance. This last in a three-year series of HEV competitions provided the testing grounds to evaluate the different approaches of 29 universities and colleges constructing HEVs. These HEVs competed in an array of events, including: acceleration, emissions testing, consumer acceptance, range, vehicle handling, HVAC testing, fuel economy, and engineering design. The teams also documented the attributes of their vehicles in the technical reports. The strategies and approaches to HEV design are analyzed on the basis of the data from each of the events. The overall performance for promising HEV approaches is also examined.
Technical Paper

The 1990 SAE Methanol Challenge: Summary of a Successful Student Design Competition

1991-02-01
910570
A follow-up to the 1989 Society of Automotive Engineers (SAE) Methanol Marathon called the Methanol Challenge was held in April 1990. One of a series of engineering student competitions using alternative fuels organized and conducted by the Center for Transportation Research at Argonne National Laboratory, the Methanol Challenge pushed the technology for dedicated M85 (85% methanol, 15% hydrocarbon fuel) methanol passenger cars to new levels. The event included complete federal exhaust emissions, cold-start and driveability, performance, and fuel economy testing. Twelve teams of student engineers from the United States and Canada competed in the Challenge using Chevrolet Corsicas donated by General Motors (GM) to the schools. The winning car, from the University of Tennessee, simultaneously demonstrated extremely low emissions, dramatically increased performance, and significantly improved fuel economy.
Technical Paper

Testing Hybrid Electric Vehicle Emission and Fuel Economy at the 1994 DOE/SAE Hybrid Electric Vehicle Challenge

1995-02-01
950177
From June 12-20, 1994, an engineering design competition called the 1994 Hybrid Electric Vehicle (HEV) Challenge was held in Southfield, Michigan. This collegiate-level competition, which involved 36 colleges and universities from across North America, challenged the teams to build a superior HEV. One component of this comprehensive competition was the emissions event. Special HEV testing procedures were developed for the competition to find vehicle emissions and correct for battery state-of-charge while fitting into event time constraints. Although there were some problems with a newly-developed data acquisition system, we were able to get a full profile of the best performing vehicles as well as other vehicles that represent typical levels of performance from the rest of the field. This paper will explain the novel test procedures, present the emissions and fuel economy results, and provide analysis of second-by-second data for several vehicles.
Technical Paper

Technical Analysis of the 1994 HEV Challenge

1995-02-01
950176
The 1994 Hybrid Electric Vehicle Challenge provided the backdrop for collecting data and developing testing procedures for hybrid electric vehicle technology available at colleges and universities across North America. The data collected at the competition was analyzed using the HEV definitions from the draft SAE J1711 guidelines. The energy economy, percentage of electrical to total energy used, and acceleration performance was analyzed for any correlation between the over-the-road data and the commuter-sustaining, commuter-depleting, and reserve-sustaining hybrid vehicles. The analysis did not provide any direct correlation between over-the-road data and the three hybrid types. The analysis did show that the vehicle configurations provide the best information on vehicle performance. It was also clear that a comprehensive data analysis system along with a well-defined testing procedure would allow for a more complete analysis of the data.
Technical Paper

Stochastic Knock Detection, Control, Software Integration, and Evaluation on a V6 Spark-Ignition Engine under Steady-State Operation

2014-04-01
2014-01-1358
The ability to operate a spark-ignition (SI) engine near the knock limit provides a net reduction of engine fuel consumption. This work presents a real-time knock control system based on stochastic knock detection (SKD) algorithm. The real-time stochastic knock control (SKC) system is developed in MATLAB Simulink, and the SKC software is integrated with the production engine control strategy through ATI's No-Hooks. The SKC system collects the stochastic knock information and estimates the knock level based on the distribution of knock intensities fitting to a log-normal (LN) distribution. A desired knock level reference table is created under various engine speeds and loads, which allows the SKC to adapt to changing engine operating conditions. In SKC system, knock factor (KF) is an indicator of the knock intensity level. The KF is estimated by a weighted discrete FIR filter in real-time.
X