Refine Your Search

Topic

Author

Search Results

Technical Paper

Use of a PPS Sensor in Evaluating the Impact of Fuel Efficiency Improvement Technologies on the Particle Emissions of a Euro 5 Diesel Car

2014-04-01
2014-01-1601
The effect of “Start & Stop” and “Gear Shift Indicator” - two widespread fuel saving technologies - on fuel consumption and particle emissions of a Euro 5 passenger car is evaluated in this paper. The vehicle was subjected to a series of different driving cycles, including the current (NEDC) and future (WLTC) cycles implemented in the European type approval procedure at cold and hot start condition and particle number was measured with an AVL Particle Counter. In addition, we have utilized two Pegasor Particle Sensor units positioned in different locations along the sampling line to assess the impact of the sampling location on the particle characteristics measured during highly transient events. The results showed that the particle number emission levels over the WLTC were comparable to the NEDC ones, whereas NOx emissions were more than twofold higher. Both fuel saving technologies can lead to reduced fuel consumption and, subsequently CO2 emissions, in the order of 5%.
Technical Paper

Transient Modeling of 3-Way Catalytic Converters

1994-03-01
940934
The modeling of transient phenomena occurring inside an automotive 3-way catalytic converter poses a significant challenge to the emissions control engineer. Since the significant progress that has been observed with steady-state models cannot be directly exploited in this direction, it is necessary to develop a fully transient model and computer code incorporating dynamic behaviour of the three way catalytic converter in a relatively simple and effective way. The Laboratory of Applied Thermodynamics (LAT), Aristotle University Thessaloniki, is cooperating with the Engine Direction of FIAT Research Center, in the development of a computer code fulfilling these objectives, within the framework of an EEC Brite EuRam cost shared project. The CRF and LAT modeling approaches, along with the underlying philosophy and experimental work, are presented in this paper.
Technical Paper

Transient Behaviour of Turbocharged-Engined Vehicles Equipped with Diesel Particulate Traps

1992-02-01
920361
This paper presents a study of the transient behaviour of the turbocharged engine equipped with a diesel particulate trap. The trap is considered to be placed before the turbine, to fully exploit the high regeneration potential of the turbocharged engine. This necessitates some design changes to the exhaust system in front of the turbine, in order to keep a good turbocharger response. The fast temperature response of a light-weight exhaust manifold, partially offsets the effect of the trap thermal inertia. However, the turbocharger lag may deteriorate in some cases, due to the significant modifications produced by the trap dead volume on the pulse turbocharging system operation. This effect varies with trap size and mean pressure drop, and it could necessitate a new turbocharger matching.
Technical Paper

The Potential of On-Board Data Monitoring for the Characterization of Real-World Vehicle Fuel and Energy Consumption and Emissions

2023-08-28
2023-24-0113
The upcoming Euro 7 regulation introduces the concept of continuous On-Board (emission) Monitoring (OBM), while On-Board Fuel/Energy Consumption Monitoring (OBFCM) is already an integral part of modern vehicles. The current work aims to assess whether on-board data could provide sufficient information to characterize real-world vehicle performance and emissions. Nine Euro 6d-ISC-FCM passenger cars were used, covering a wide range of powertrain technologies, from conventional gasoline and diesel to hybrid (HEV) and plug-in hybrid (PHEV) electric vehicles. Three vehicles were thoroughly tested in the laboratory and on the road, aiming at evaluating in detail the on-board data monitoring system. The evaluation concerned OBFCM device recordings of fuel consumed and distance travelled, as well as tailpipe NOx emissions and exhaust mass flow rate.
Technical Paper

Study of Stoichiometric and Lean Combustion in a Spark Ignition, Direct Injection Optical Engine Using E10 and ETBE20 Fuels

2022-08-30
2022-01-1003
Biofuels are a promising alternative to fossil fuels as their availability has been reduced during the last decades and they are the main sources of greenhouse gases emissions. Moreover, the targets of the international regulations include reduction of fossil fuels consumption, and improvement of the sustainability of the vehicle fleet. Blending gasoline with biofuels will result in changes in fuel blending procedures and combustion process especially for the gasoline direct injection (GDI) engines. In this article, flame visualization using chemiluminescence techniques in a Single Cylinder Optical Research Engine (SCORE) is presented, with an adjusted intake pressure of 850 mbar and early intake single injection (280 CAD BTDC), by using 100% hydrocarbon-based gasoline, E10 (90% gasoline - 10% ethanol) and ETBE20 (80% gasoline - 20% ethyl tert-butyl ether). ETBE20 is a potential alternative for E10, as it contains the same amount of renewable fuel and has low water solubility.
Technical Paper

SCR System Optimization and Control Supported by Simulation Tools

2013-04-08
2013-01-1075
The successful design and especially the control of the SCR system is a challenging process that can be supported by the application of simulation tools. As a first step, we employ physico-chemically informed ‘off-line’ models that are calibrated with the help of targeted small- and full-scale tests. Despite their high level of sophistication, this SCR model is able to be integrated in a control-oriented simulation software platform and connected to other powertrain simulation blocks. The target is to use this simulation platform as a virtual environment for the development and optimization of SCR control strategies. The above process is demonstrated in the case of a passenger car SCR. The model is calibrated at both fresh and aged catalyst condition and validated using experimental data from the engine bench under a wide variety of operating conditions. Next, the calibrated model was coupled with embedded control models, developed for Euro 6 passenger car powertrains.
Technical Paper

Reversible Sulfur Poisoning of 3-way Catalyst linked with Oxygen Storage Mechanisms

2021-09-05
2021-24-0069
Even though the 3-way catalyst chemistry has been studied extensively in the literature, some performance aspects of practical relevance have not been fully explained. It is believed that the Oxygen Storage Capacity function of 3-way catalytic components dominates the behavior during stoichiometry transitions from lean to rich mode and vice versa whereas a number of mathematical models have been proposed to describe the dynamics of pollutant conversion. Previous studies have suggested a strong impact of Sulfur on the pollutant conversion after a lean to rich transition, which has not been adequately explained and modelled. Lean to rich transitions are highly relevant to catalyst ‘purging’ needed after exposure to high O2 levels (e.g. after fuel cut-offs). This work presents engine test measurements with an engine-aged catalyst that highlight the negative impact of Sulfur on pollutant conversion after a lean to rich transition.
Technical Paper

Regeneration of DPF at Low Temperatures with the Use of a Cerium Based Fuel Additive

1996-02-01
960135
A light duty truck with a naturally aspirated engine was equipped with a DPF (changing the exhaust pipe and eliminating the muffler) and operated on fuel doped with a cerium based additive in various concentrations. Tests were carried out on chassis dynamometer using the European urban cycle, but also under city driving conditions with maximum speeds up to 50 km/h and exhaust gas temperature up to 300°C. Under these conditions, it was observed that filter regeneration was always possible at relatively high particulate accumulation in the filter, while the effect on fuel consumption (as measured over the emission test cycles) was not detectable, compared to baseline data of the vehicle. Change in driving conditions from slow urban to highway with highly loaded trap led to spontaneous trap regeneration at higher temperatures, without effect on fuel consumption. This paper documents the operation of a fully passive DPF system for diesel light duty vehicles.
Journal Article

Pressure Drop of Particulate Filters and Correlation with the Deposited Soot for Heavy-Duty Engines

2019-09-09
2019-24-0151
Particulate filters are a widely used emission control device on heavy-duty diesel engines. The accumulation of particulate matter, mostly consisting of soot, inside the filter results in increased filter pressure-drop (backpressure). This increased backpressure has been used by the on-board control systems as trigger for regeneration procedures, which aim to actively oxidize the accumulated soot. However, it is known that passive soot oxidation during normal operation affects the correlation between backpressure and the deposited soot mass in filter. Therefore, the backpressure alone cannot be a reliable trigger for regeneration. In this work we highlight operating conditions with very poor correlation between backpressure and accumulated soot mass in filter and evaluate the possible root causes. Experiments with several heavy-duty diesel engines and particulate filters were conducted on engine test bench.
Technical Paper

Optimization Methodologies for DPF Substrate-catalyst Combinations

2009-04-20
2009-01-0291
As the Diesel Particulate Filter (DPF) technology is nowadays established, research is currently focusing on meeting the emission and durability requirements by proper system design. This paper focuses on the optimum combination between the catalytic coating and substrate structural properties using experimental and simulation methodologies. The application of these methodologies will be illustrated for the case of SiC substrates coated with innovative sol-gel coatings. Coated samples are characterized versus their uncoated counterparts. Multi-dimensional DOC and DPF simulation models are used to study several effects parametrically and increase our understanding on the governing phenomena. The comparative analysis of DOC/DPF systems covers filtration – pressure drop characteristics, CO/HC/NO oxidation performance, effect of washcoat amount and catalyst dispersion on oxidation activity and finally passive regeneration performance.
Technical Paper

Modeling the Interactions Of Soot and SCR Reactions in Advanced DPF Technologies with Non-homogeneous Wall Structure

2012-04-16
2012-01-1298
The pressure for compact and efficient deNO systems has led to increased interest of incorporating SCR coatings in the DPF walls. This technology could be very attractive especially if high amounts of washcoat loadings could be impregnated in the DPF porous walls, which is only possible with high porosity filters. To counterbalance the filtration and backpressure drawbacks from such high porosity applications, the layered wall technology has already been proposed towards minimizing soot penetration in the wall and maximizing filtration efficiency. In order to deal with the understanding of the complex interactions in such advanced systems and assist their design optimization, this paper presents an advanced modeling framework and selected results from simulation studies trying to illustrate the governing phenomena affecting deNO performance and passive DPF regeneration in the above combined systems.
Technical Paper

Model-based optimization methods of combined DPF+SCR Systems

2007-09-16
2007-24-0098
The design of integrated exhaust lines that combine particulate and NOx emission control is a multidimensional optimization problem. The present paper demonstrates the use of an exhaust system simulation platform which is composed of well-established multidimensional mathematical models for the transient thermal and chemical phenomena in DOC, DPF and SCR systems as well as connecting pipe heat transfer effects. The analysis is focused on the European Driving Cycle conditions. Illustrative examples on complete driving cycle simulations with and without forced regeneration events are presented for alternative design approaches. The results illustrate the importance of DOC and DPF heat capacity effects and connecting pipe heat losses on the SCR performance. The possibility of combining DPF and SCR functionality on a single wall-flow substrate is studied.
Technical Paper

Model-based Optimization of Catalyst Zoning in Diesel Particulate Filters

2008-04-14
2008-01-0445
Catalyzed wall-flow particulate filters are increasingly applied in diesel exhaust after-treatment for multiple purposes, including low-temperature catalytic regeneration, CO and hydrocarbon conversion, as well as exothermic heat generation during forced regeneration. In order to optimize Precious Metals usage, it may be advantageous to apply the catalytic coating non-uniformly in the DPF, a technology referred to as “catalyst zoning”. In order to simulate the behavior of such a filter, one has to consider coupled transport-reaction modeling. In this work, a previously developed model is calibrated versus experimental data obtained with full-scale catalyzed filters on the engine dynamometer. In a next step, the model is validated under a variety of operating conditions using engine experiments with zoned filters. The performance of the zoned catalyst is analyzed by examining the transient temperature and species profiles in the inlet and outlet channels.
Technical Paper

Measurement and Intra-Layer Modeling of Soot Density and Permeability in Wall-flow Filters

2006-04-03
2006-01-0261
The objective of this study is to study the soot layer density and permeability in wall-flow diesel particulate filters. Knowledge of the soot morphology as function of the operating conditions is important for the design and on-board control of Diesel Particulate Filters (DPFs). The experimental set-up relies on a specially designed soot loading procedure on single-channel cordierite filters. The experimental conditions simulate real-world as close as possible regarding the filtration velocity, temperature and soot quality, since the sampling is done in real exhaust. By cutting, weighing and imaging the single channel filters it is possible to measure with accuracy the soot layer thickness as deposited under different operating conditions. Combined with pressure drop measurements and modeling, it is further possible to evaluate the soot layer permeability.
Journal Article

Impact of FAME Content on the Regeneration Frequency of Diesel Particulate Filters (DPFs)

2014-04-01
2014-01-1605
Modern diesel vehicles utilize two technologies, one fuel based and one hardware based, that have been motivated by recent European legislation: diesel fuel blends containing Fatty Acid Methyl Esters (FAME) and Diesel Particulate Filters (DPF). Oxygenates, like FAME, are known to reduce PM formation in the combustion chamber and reduce the amount of soot that must be filtered from the engine exhaust by the DPF. This effect is also expected to lengthen the time between DPF regenerations and reduce the fuel consumption penalty that is associated with soot loading and regeneration. This study investigated the effect of FAME content, up to 50% v/v (B50), in diesel fuel on the DPF regeneration frequency by repeatedly running a Euro 5 multi-cylinder bench engine over the European regulatory cycle (NEDC) until a specified soot loading limit had been reached.
Technical Paper

Heat Transfer Analysis of Catalytic Converters during Cold Starts

2019-09-09
2019-24-0163
The transient heat transfer behavior of an automotive catalytic converter has been simulated with OpenFOAM in 1D. The model takes into consideration the gas-solid convective heat transfer, axial wall conduction and heat capacity effects in the solid phase, but also the chemical reactions of CO oxidation, based on simplified Arrhenius and Langmuir-Hinshelwood approaches. The associated parameters are the results of data in literature tuned by experiments. Simplified cases of constant flow rates and gas temperatures in the catalyst inflow have been chosen for a comprehensive analysis of the heat and mass transfer phenomena. The impact of inlet flow temperatures and inlet flow rates on the heat up characteristics as well as in the CO emissions have been quantified. A dimensional analysis is proposed and dimensionless temperature difference and space-time coordinates are introduced.
Technical Paper

Filtration and Regeneration Performance of a Catalyzed Metal Foam Particulate Filter

2006-04-03
2006-01-1524
The objective of this study is to present a particulate filter concept, based on a new porous material: INCOFOAM® HighTemp, a Ni-based superalloy foam. The paper examines the filtration and pressure drop characteristics as well as the regeneration performance of different filter configurations, based on experimental data and modeling. A number of different foam structures with variable pore characteristics are studied. The experimental testing covers flow and pressure drop behavior with air and exhaust gas, filtration efficiency measurements as function of particle size and regeneration rate measurements. The testing starts from mini-scale reactors and proceeds to real exhaust testing on the engine bench as well as vehicle tests on the chassis dynamometer and on-road. In parallel, a previously developed mathematical model is applied to study and understand the filtration and pressure drop mechanisms in the case of clean and soot loaded filters.
Technical Paper

Experimental and Simulation Study of Zero Flow Impact on Hybrid Vehicle Emissions

2024-06-12
2024-37-0036
Combustion engines in hybrid vehicles turn on and off several times during a typical passenger car trip. Each engine restart may pose a risk of excessive tailpipe emissions in real-drive conditions if the after-treatment system fails to maintain an adequate temperature level during zero flow. In view of the tightening worldwide tailpipe emissions standards and real-world conformity requirements, it is important to detect and resolve such risks via cost-effective engineering tools relying on accurate 3d analysis of the thermal and chemical behavior of exhaust systems. In this work, we present a series of experiments to examine the impact of zero-flow duration on the exhaust system cooling and subsequent emissions risk. We also present a catalyst model calibrated to predict the 3d thermal and chemical behavior under normal and zero flow conditions. Particular emphasis is given to the phenomena of free convection and thermal radiation dominating the heat transfer at zero flow.
Technical Paper

Experimental Investigation of Cyclic Variability on Combustion and Emissions of a High-Speed SI Engine

2015-04-14
2015-01-0742
Cyclic combustion variability (CCV) is an undesirable characteristic of spark ignition (SI) engines, and originates from variations in gas motion and turbulence, as well as from differences in mixture composition and homogeneity in each cycle. In this work, the cycle to cycle variability on combustion and emissions is experimentally investigated on a high-speed, port fuel injected, spark ignition engine. Fast response analyzers were placed at the exhaust manifold, directly downstream of the exhaust valve of one cylinder, for the determination of the cycle-resolved carbon monoxide (CO) and nitric oxide (NO) emissions. A piezoelectric transducer, integrated in the spark-plug, was also used for cylinder pressure measurement. The impact of engine operating parameters, namely engine speed, load, equivalence ratio and ignition timing on combustion and emissions variability, was evaluated.
Technical Paper

Experimental Evaluation of the Fuel Consumption and Emissions Reduction Potential of Low Viscosity Lubricants

2009-06-15
2009-01-1803
Reducing fuel consumption and emissions from road transport is a key factor for tackling global warming, promoting energy security and sustaining a clean environment. Several technical measures have been proposed in this aspect amongst which the application of low viscosity engine lubricants. Low viscosity lubricants are considered to be an interesting option for reducing fuel consumption (and CO2 emissions) throughout the fleet in a relatively cost effective way. However limited data are available regarding their actual “real-world” performance with respect to CO2 and other pollutant emissions. This study attempts to address the issue and to provide experimental data regarding the benefit of low viscosity lubricants on fuel consumption and CO2 emissions over both the type-approval and more realistic driving cycles.
X