Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Pressure Drop of Particulate Filters and Correlation with the Deposited Soot for Heavy-Duty Engines

2019-09-09
2019-24-0151
Particulate filters are a widely used emission control device on heavy-duty diesel engines. The accumulation of particulate matter, mostly consisting of soot, inside the filter results in increased filter pressure-drop (backpressure). This increased backpressure has been used by the on-board control systems as trigger for regeneration procedures, which aim to actively oxidize the accumulated soot. However, it is known that passive soot oxidation during normal operation affects the correlation between backpressure and the deposited soot mass in filter. Therefore, the backpressure alone cannot be a reliable trigger for regeneration. In this work we highlight operating conditions with very poor correlation between backpressure and accumulated soot mass in filter and evaluate the possible root causes. Experiments with several heavy-duty diesel engines and particulate filters were conducted on engine test bench.
Technical Paper

Heat Transfer Analysis of Catalytic Converters during Cold Starts

2019-09-09
2019-24-0163
The transient heat transfer behavior of an automotive catalytic converter has been simulated with OpenFOAM in 1D. The model takes into consideration the gas-solid convective heat transfer, axial wall conduction and heat capacity effects in the solid phase, but also the chemical reactions of CO oxidation, based on simplified Arrhenius and Langmuir-Hinshelwood approaches. The associated parameters are the results of data in literature tuned by experiments. Simplified cases of constant flow rates and gas temperatures in the catalyst inflow have been chosen for a comprehensive analysis of the heat and mass transfer phenomena. The impact of inlet flow temperatures and inlet flow rates on the heat up characteristics as well as in the CO emissions have been quantified. A dimensional analysis is proposed and dimensionless temperature difference and space-time coordinates are introduced.
Technical Paper

Analysis of TWC Characteristics in a Euro6 Gasoline Light Duty Vehicle

2019-09-09
2019-24-0162
A Euro6 gasoline light duty vehicle has been tested at the engine dynamometer and the emissions have been analyzed upstream and downstream the Three-Way-Catalyst (TWC) during a WLTC cycle. Catalyst simulations have been used for assessing the processes inside the catalytic converter using a reaction scheme based on 19 brutto reactions (direct oxidation and reduction, selective catalytic reductions with CO, C3H6 and H2, steam reforming, water-gas shift and bulk ceria as well as surface ceria reactions). The reactions have been parameterized in order to best approximate the measurements. Based on the reactions taken into account, the real vehicle emissions can be predicted with good accuracy. The simulations show that the cycle emissions comprise mainly the cold start contribution as well as discrete emission break-through events during transients. During cold start no reactions are evident in the catalyst before the temperature of the gas entering the catalyst reaches 270°C.
Technical Paper

A Modeling Study of Soot and De-NOx Reaction Phenomena in SCRF Systems

2011-06-09
2011-37-0031
The development of thermally durable zeolite NH3/Urea-SCR formulations coupled with that of high porosity filters substrates has opened the way to integrate PM and NOx control into a single device, namely an SCR-coated Diesel Particulate Filter (SCRF). A few experimental works are already present in the literature regarding SCRF systems, mainly addressing the DeNOx performances of the system (in both presence and absence of soot) under both steady state and transient conditions. The purpose of the present work is to perform a simulation study focused on phenomena which are expected to play key roles in SCRF systems, such as coupling of reaction and diffusion phenomena, soot effect on DeNOx activity, SCR coating effect on soot regeneration and filtration efficiency and competition between soot oxidation and DeNOx processes involving NO2.
X