Refine Your Search

Topic

Search Results

Technical Paper

VDQI - An Approach to Predict Vehicle Design Quality at Early Stages of Product Development

2010-04-12
2010-01-0699
In today's world with a dynamic market and varying customer expectations, it becomes inevitable that we find means of recognizing customer needs with all dimensions and instill them as inherent specifications of a product. Automobiles no way fall away from these intangible demands of the changing world, as personal conveyance (car/motorcycle/scooter) nowadays is more of a basic need. It becomes more of challenge to automotive manufacturers, to offer continuously improving quality products, at competitive prices to be in business. It's very important that as automotive designers we recognize quality in its totality and establish a predictive methodology to inculcate quality into the design at early stages of vehicle development.
Technical Paper

Study on Correlation of Commercial Vehicle Axle Response with Road Profile for ISO Road Class Categorization and Durability Analysis

2018-04-03
2018-01-1114
Durability analysis is essential for vehicle validation and is carried out with the inputs of different road conditions. The selection of roads for durability analysis is critical and should represent the actual working conditions for the selected vehicle. Generally, the road conditions are subject to change with respect to time. To overcome the above, road profile data is an essential parameter which helps to represent and categorize roads in terms of ISO (International Organization for Standardization) road class. The ISO road classes objectively classify the roads with respect to roughness. This classification holds good by categorizing the signals to the respective road classes rather than different test roads. The road profiles are measured using inertial profiler methodology along with vehicle acceleration and displacement responses, also analyzed and categorized with respect to ISO road class.
Technical Paper

Structural Fatigue Strength Evaluation of Commercial Vehicle Structures by Calculating Damage Due to Road Load Inputs

2013-01-09
2013-26-0139
Evaluation of vehicle structural durability is one of the key requirements in design and development of today's automobiles. Computer simulations are used to estimate vehicle durability to save the cost and time required for building and testing the prototype vehicles. The objective of this work was to find the service life of automotive structures like passenger commercial vehicle (bus) and truck's cabin by calculating cumulative fatigue life for operation under actual road conditions. Stresses in the bus and cabin are derived by means of performing finite element analysis using inertia relief method. Multi body dynamics simulation software ADAMS was used to obtain the load history at the bus and cabin mount locations - using measured load data as input. Strain based fatigue life analysis was carried out in MSC-Fatigue using static stresses from Nastran and extracted force histories from ADAMS. The estimated fatigue life was compared with the physical test results.
Technical Paper

Steering Column Slip Endurance Test & Rig Development

2018-04-03
2018-01-0125
In the emerging commercial vehicle sector, it is very essential to give a product to customer, which is very reliable and less prone to the failures to make the product successful in the market. In order to make it possible, the product is to be validated to replicate the exact field conditions, where it is going to be operated. Lab testing plays a vital role in reproducing the field conditions in order to reduce the lead time in overall product life cycle development process. This paper deals with the design and fabrication of the steering column slip endurance test rig. This rig is capable of generating wear on the steering column splines coating which predominantly leads to failure of steering column. The data acquired from Proving Ground (PG) was analyzed and block cycles were generated with help of data analyzing tools.
Technical Paper

Seat Suspension Based on Variable Absorber System Stiffness for Enhanced Ride Comfort

2006-10-31
2006-01-3480
One of the important methods by which vibrations of a body are reduced is by the use of vibration absorbers or tuned absorbers. This technique involves attaching a spring mass system, called absorber system, to the vibrating body (also called primary body). This paper is a case study dealing with a primary system, here a driver seat, to attenuate its response to disturbance. It has high damped natural frequency compared to the base excitation frequency, which was collected from test data. The paper discusses the variations in absorber and primary system damping ratio, mass ratio variation and usage of variable stiffness. Detailed analysis showed instability in the tuned system due to the large gap between the primary body's damped natural frequency, and the target base excitation frequency. In order to address varying target excitation frequency, an adaptive tuned absorber is suggested.
Technical Paper

Real Road Transient Driving Cycle Simulations in Engine TestBed for Fuel Economy Prediction

2014-10-13
2014-01-2716
The present work describes an approach to predict the vehicle fuel economy by simulating its engine drive cycle on a transient engine dynamometer in an engine testbed. The driving cycles investigated in the current study were generated from the typical experimental data measured on different vehicles ranging from Intermediate Commercial Vehicle (ICV) to Heavy-duty Commercial Vehicle (HCV) in real-world traffic conditions include various cities, highways and village roads in India. Reliability and robustness of the method was studied on various engines with cubic capacity from 3.8 liters to 8 liters using different drive cycles, and the results were discussed. Later, using same measured drive cycles, vehicle fuel economy was predicted by a vehicle simulation tool (AVL CRUISE) and results were compared with experimental data. In addition, engine coolant temperature effect on fuel economy was investigated.
Technical Paper

Powertrain Cradle Verification and Validation for Bus Application Export Market

2018-04-03
2018-01-1379
To capture market share in different regions of the world, the product must fit different road profiles and operating conditions. Designing a product which suits two different markets requires many factors to be considered like the topography, driving pattern and road load profiles. This project deals with once such situations and required a stringent validation protocol which shall encompass all possible driving scenarios. The fully built vehicle is to be exported to a different market and required powertrain change and subsequently required a new cradle design. Customer usage and road profile study was carried out in the new market to estimate the percent operation in each zone i.e. good road and bad road. CAE analysis carried out to capture stress hotspots and possible failure locations. Vehicle is taken to road to measure frame acceleration at different speeds i.e. 40 kmph to 100 kmph.
Technical Paper

Optimization of Proving Ground Durability Test Sequence Based on Relative Damage Spectrum

2018-04-03
2018-01-0101
In competitive vehicle market, the product must be designed and validated in shorter time span without compromising the quality. The durability of the vehicle is tested either by on road trials undertaken at the actual customer supplication sites for large time period or in the accelerated rough surfaces called “Proving ground” to validate in shorter time span. Accelerated proving ground durability testing plays a vital role in enabling shorter product development cycles by simulating the road load influences alone from the actual field conditions. It is imperative to simulate the test vehicle at proving ground (PG) testing such that it replicates the same damage that occurs in the field due to road loads. PG validation requires a specific durability test sequence for every segment of commercial vehicles due to different customer usage applications and terrain conditions. This diversity in applications and terrains induce structural damage at different range of frequencies.
Technical Paper

Numerical Simulation and Experimental Validation of an Engine Oil Sump for Improved Noise Characteristics

2017-06-05
2017-01-1801
Powertrain is the major source of noise and vibration in commercial vehicles and has significant contribution on both interior and exterior noise levels. It is vital to reduce the radiated noise from powertrain to meet customer expectations of vehicle comfort and to abide by the legislative noise requirements. Sound intensity mapping technique can identify the critical components of noise radiation from the powertrain. Sound intensity mapping has revealed that oil sump as one of the major contributors for radiated noise from powertrain. Accounting the effect of dynamic coupling of oil on the sump is crucial in predicting its noise radiation performance. Through numerical methods, some amount of work done in predicting the dynamic characteristics of structures filled with fluid. This paper discusses on the capability of numerical approach in predicting the oil sump modal characteristics with fluid-structure interaction and consequent verification with experimental modal test results.
Technical Paper

Multi-Axis Simulation Test for Two-Wheeler Carrier Structure of a Commercial Vehicle Using Accelerated Road Load Data

2017-03-28
2017-01-0218
In the present scenario, delivering right product at the right time is very crucial in automotive sector. Today, most of the OEMs have started to produce FBS (Fully Build Solution) such as oil tankers, mining tippers and two-wheeler carriers based on the market requirements. During product development phase, all automotive components undergo stringent validation protocol either in on-road or laboratory which consumes most of the product development time. This project is focused on developing validation methodology for two-wheeler carrier structure (deck) of a commercial vehicle. For this, road load data were acquired in the typical routes of customers at different loading conditions. Roads were classified as either good or bad based on the axle acceleration. To shorten the test duration, actual road load data was compressed using strain based damage editing techniques. The spectrum and transmissibility of acceleration signals at the decks were analyzed to select a deck for validation.
Technical Paper

Manufacturing Execution System for Process Improvement

2009-10-06
2009-01-2855
In an era of global manufacturing and reduced costs, it is imperative that the manufacturing floor is visible to top management in a boardroom to enable them to make key decisions. Manufacturing Execution System (MES) is a method of connecting the shop floor to the top floor covering the complete gamut of activities from production sequence to finished goods. It aims to reduce the delay in transmitting production related data by linking the Production environment, Quality management, IT systems and Delivery. At Ashok Leyland’s Commercial Vehicle manufacturing facility in Ennore, India, an engine and axle components machine shop have been networked and data pertaining to production of Cylinder Block, Cylinder Head, Camshaft, Crankshaft, Axle Arm and Axle Beam components are accessible from anywhere in the company irrespective of location.
Technical Paper

Interior Noise Refinement in an ICV Bus through Driveline Torsional Vibration Analysis

2018-06-13
2018-01-1472
With a push for urbanization across cities, there is an increased demand for mobility in public transportation especially buses which are provided through state transport undertakings. Hence, the expectations of this class of vehicles will be high in terms of quality and comfort to the passengers. The noise inside the passenger area of the bus becomes an important parameter, which sets apart a bus manufacturer from its competitors. The driveline of the bus is the system responsible for the transfer of power from engine to the wheels. The noise and vibration problems associated with it are detected only in the late stages of the design chain, when all its elements are tested together over a wide range of conditions. Since, calibration of engine and the selection of transmission is freezed in early stages, satisfying power and torque requirements, the only viable option left to address the problem is by optimizing the clutch parameters.
Technical Paper

Evaluation of Truck Driver Safety in Various Crash Scenarios

2013-01-09
2013-26-0029
Driver safety is one of the key considerations in truck design and development. Virtual simulation offers opportunities to reduce development time and the number of physical prototypes consumed for design verification and validation for safety parameters. Thus, the application of virtual simulations of crash has become an integral part of the vehicle development process. The continuously emerging scenarios involving challenging test requirements can only be tested by means of virtual simulation techniques. This paper presents simulations that are performed to verify various safety aspects to ensure crashworthiness of the truck cabin. The cabin structure was evaluated for various national/international safety regulations. The FE model and simulation methodology was validated through physical testing and correlated for frontal impact test and roof strength test as per AIS 029/ECE R29. Analysis performed to ensure compliance to upcoming regulation ECE R29 Revision 03 is also discussed.
Technical Paper

Evaluation of Bus Ventilation Methods Using CFD

2013-01-09
2013-26-0043
Non air-conditioned buses constitute a major portion of public transportation facilities in many countries across the world. Inadequate cabin air circulation is a major cause of passenger discomfort in these buses. The aim of this study is to model the air flow pattern inside the passenger compartment of a bus and to establish the effect of solutions such as roof vents in improving the air circulation. RANS based CFD simulations with Shear Stress Transport (SST) turbulence model have been carried out using a commercial CFD solver. The CFD methodology has been verified by comparing results with experimentally validated LES simulation results available in literature. The vehicle model used in this study was the shell structure of a bus with an overall length of 7 m and a wheel base of 3.9 m. Simulations were carried out for a four vent configuration which showed an increase of 131% in the average in-cabin air velocity over the baseline model without any roof-vents.
Technical Paper

Empirical Study of Vehicle Parameters and Optimization for Roll, Pitch, Bounce and Dive Behavior on Commercial Vehicles

2010-04-12
2010-01-0392
The primary factors influencing vehicle's dynamic behavior are the vehicle hard point definition, driver behavior and road inputs. The more the latter two are random and incorrigible in nature, the former one is quantifiable and can be controlled from designer's standpoint. In this paper, we have made an attempt to set targets to the vehicle hard point definition and thereby to optimize the vehicle for better ride behavior. This approach hence helped to converge to vehicle specifications set fundamentally designed to respond to random operating conditions and driving behavior intelligently. The work also involves study of various methodologies to predict roll, pitch, bounce and dive behaviors on a typical commercial passenger vehicle and is concluded by a sensitivity analysis to understand significance of these hard points on vehicle's real time behavior.
Technical Paper

Durability Test Sequence and Target Generation for Variants among Commercial Vehicles

2013-09-24
2013-01-2377
Based on customer application and loading condition, each Commercial Vehicle model has an entirely different usage pattern. To perform accurate durability validation, each vehicle model prototype should run on actual customer usage locations and loading conditions for the durability target kilometers. But it is time consuming and not practical. So a statistical approach is followed to generate the accelerated durability test sequence and target on in-house Proving Ground tracks to match the real customer usage for the durability target kilometers. Again a single durability test sequence and target cannot be followed for all vehicle models due to the variability in customer usage. For that, specific durability test sequence and target need to be established for every class of commercial vehicle. This paper summarizes the methodology to develop Durability test sequence and target for commercial vehicle based on the work carried out on variants of medium and heavy duty trucks.
Technical Paper

Durability Enhancement of Spring Seat in Bogie Suspension

2013-11-27
2013-01-2848
Spring seat plays major role in bogie suspension; which is guiding and controlling the leaf spring for better suspension and also to withstand the compressive load from leafs. Currently used spring seats are failing frequently in medium and heavy duty vehicles, which lead to customer concerns by higher idle time and part replacement cost. Thickness of the spring seat can't be increased by large extent due to packaging constraints in the vehicle. Stress levels identified by FEA method are found higher than the current material capacity. With these constraints, the spring seat has been re-designed with improved strength and ductility of material by modern technology - Austempered Ductile Iron (ADI). The parts have been developed and assembled in various tipper applications and performance was studied. The developed spring seat shows five times superior durability compare to existing design.
Technical Paper

Durability Analysis of a Bus by Virtual Test Model (VTM)

2013-09-24
2013-01-2378
In this work, durability of the bus structure is evaluated with a Virtual Test Model (VTM).Full vehicle Multi Body Dynamics (MBD) model of the bus is built, with inclusion of flexibility of the bus structure to capture structural modes. Component mode synthesis method is used for creation of flexible model for use in MBD. Load extraction is done by performing MBD analysis with measured wheel inputs. Modal Superposition Method (MSM) is employed in FE along with these extracted loads for calculation of modal transient dynamic stress response of the structure. e-N based fatigue life is estimated. The estimated fatigue life from the modal superposition method show good correlation with the physical test results done in 6-poster test rig.
Technical Paper

Development of a Specific Durability Test Cycle for a Commercial Vehicle Based on Real Customer Usage

2013-01-09
2013-26-0137
Every class of commercial vehicle has an entirely different usage pattern based on customer application and needs. To perform accurate durability testing, these prototypes should run on real customer usage locations and loading conditions for the target life. However, this is time consuming and not practical, hence resulting in Proving Ground (PG) testing. It is also known that a standard PG durability cycle cannot be valid for every class of vehicle and every application. So a statistical approach was followed to develop an accelerated durability test cycle based on in-house PG test surfaces in order to match the real customer usage to the durability target life. This paper summarizes the methodology to develop Durability Validation test cycles for commercial vehicle based on the work carried out on a heavy duty tipper and an intermediate commercial vehicle.
Technical Paper

Design and Development of Front Air Suspension for Front Engine Bus with Floor at Entry Plus One Step

2012-09-24
2012-01-1934
The automotive industry is heading towards introduction of newer and newer technology aimed at providing better comforts and value to the end user. The public/ private transport vehicles in urban/rural areas with FE has wide level of acceptance in South East Asian countries. The acceptance of FE buses is mainly because of the ram air cooling of the engine, lesser maintenance, higher fuel efficiency etc whereas rear engine buses with entry plus one step are deprived of these benefits. Hence, we have designed and developed a new Front Engine Semi -Low Floor bus having floor at E+1 step. The primary design challenge was to meet the uniform floor throughout the length of the vehicle. This uniqueness will help in easy ingress and egress of the passengers which helps in reducing the turn around rime of the vehicle. Other challenges includes, meeting the customer requirements in terms of application, load and duty cycle for this new design.
X