Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Wind Tunnel Evaluation of Potential Aerodynamic Drag Reductions from Trailer Aerodynamic Component Combinations

2015-09-29
2015-01-2884
The use of devices to reduce aerodynamic drag on large trailers and save fuel in long-haul, over-the-road freight operations has spurred innovation and prompted some trucking fleets to use them in combinations to achieve even greater gains in fuel-efficiency. This paper examines aerodynamic performance and potential drag reduction benefits of using trailer aerodynamic components in combinations based upon wind tunnel test data. Representations of SmartWay-verified trailer aerodynamic components were tested on a one-eighth scale model of a class 8 sleeper tractor and a fifty three foot, van trailer model. The open-jet wind tunnel employed a rolling floor to reduce floor boundary layer interference. The drag impacts of aerodynamic packages are evaluated for both van and refrigerated trailers. Additionally, the interactions between individual aerodynamic devices is investigated.
Technical Paper

Utilizing spectral analysis to quantify resolution of low frequency behavior in testing commercial vehicles

2018-04-03
2018-01-0747
Despite the recent broadening of acceptable test methods for certifying aerodynamic performance, there has been little attention on how to determine the time averaging window used for providing mean forces. This is of particular relevance to the assessment of commercial vehicles as they are significantly affected by low-frequency patterns that are hard to predict and vary with different geometry configurations. Published guidelines in the industry suggest that good engineering judgement be used and a qualitative assessment of force histories is adequate. These suggested methods leave the accuracy of the time averaging to the experience and judgement of the user and is highly dependent on the specific characteristics of the benchmark case. Furthermore these methods are not able to quantify the error present due to motions slower than length of the sampled data.
X