Refine Your Search

Topic

Author

Search Results

Technical Paper

Virtual Engine Optimization from Design to Experimentation

2017-01-10
2017-26-0264
Virtual modeling of engine and predicting the performance and emissions is now becoming an essential step in engine development for off-road application due to the flexibility in tuning of the combustion parameters and requirement of shorter development times. This paper presents an approach where the test bed calibration time is reduced using virtual techniques, such as 1D thermodynamic simulation and 3D CFD combustion simulation for 4 cylinders TCIC engine complying with Stage IIIA emission norms. 1D thermodynamic simulation has played an important role in the early stage development of an engine for selection of engine sub systems like turbocharger, manifolds, EGR system, valve timings etc. The application of 1D Simulation tool for combustion system development, focusing on NOx emissions for an off road multicylinder mechanical injection diesel engine is discussed.
Technical Paper

Utilization of Knowledge Based Utilities for Streamlining the Characterization Procedure of Acoustic Material Properties

2014-04-28
2014-28-0034
Designers and analysts need to compare and conduct synthesis for selection of materials based on their properties involving simulation, optimization and correlation with test data. An example is that of acoustic material properties such as random and normal incidence sound absorption coefficient and sound transmission loss. The international test standards necessitate having standard operating procedures for characterization of these materials. This procedure is quite involved and addresses steps including test data acquisition, post processing, calculations, classification, report generation and most importantly, storage of such innumerable material properties in a structured manner to facilitate ease of retrieval and updating of properties. It is also highly desirable to have a synergy of the databank directly with simulation tools. Further, all of these steps need to be accurate, non-speculative and quick.
Technical Paper

Use of Combined CAE and Experimental Testing Approach for Engine Noise Reduction

2015-01-14
2015-26-0123
The work presented in this paper deals with the use of combined Computer Aided Engineering (CAE) and experimental testing approach for reducing engine noise. The paper describes a systematic approach for giving solutions to the structure borne engine noise related problems. Noise Source Identification (NSI) was carried out on diesel engine to identify noise radiating sources, ranking of noise sources was carried out and contribution of individual engine component in radiated Sound Power Level (SWL) was computed. Detailed Finite Element Model (FEM) of engine assembly was developed and model was correlated in terms of natural frequencies and transfer functions by performing modal testing. Correlated FEM was used for predicting surface vibration velocities under various engine speeds and loading conditions in frequency domain. Velocities so predicted in frequency domain were used as an input for SWL prediction using Boundary Element Method (BEM) approach.
Technical Paper

The Impact of Uncertainty Quantification and Sensitivity Analysis in CAE Simulation based Regulatory Compliance

2024-01-16
2024-26-0294
Computer-aided engineering (CAE) is a routinely used technology for the design and testing of road vehicles, including the simulation of their response to an impact. To increase automotive industry competitiveness by reducing physical test-based type approval and to improve road safety, recent initiatives have been taken by both industry and public authorities to promote the use of virtual testing through numerical simulation as an alternative way to check regulatory compliance. [1] To ensure acceptance of this alternative method, the accuracy of the simulation models and procedures needs to be assured and rated independently of the modelling process, software tools, and computing platform. Similarly, it is also imperative to understand the uncertainties emerging out of different component design parameters and analyze their sensitivity towards producing deviations in the reported results as per the requirements of the regulatory standard.
Technical Paper

The Application of the Simulation Techniques to Predict and Reduce the Interior Noise in Bus Development

2012-04-16
2012-01-0219
In order to reduce development time and costs, application of numerical prediction techniques has become common practice in the automotive industry. Among the wide range of simulation applications, prediction of the vehicle interior noise is still one of the most challenging ones. The Finite Element Method (FEM) is well known for acoustic predictions in the low-frequency range. As part of the development of a full sized bus model, noise levels at Driver Ear Levels (DEL) and Passenger Ear Levels (PEL) were targeted. The structural and acoustic analysis were performed for a bus to reduce interior noise in the low-frequency range. Various counter measures were identified and structural optimization/modifications were performed from virtual simulation to reduce the DEL and PEL. Structure-borne noise due to both road-induced vibration and engine vibration were considered by using FEM techniques.
Technical Paper

Smart and Compact Simulation Tool for Electric Vehicle Component Sizing

2021-09-22
2021-26-0419
Electric Vehicles (EVs), with its inherent advantage of zero tailpipe emissions, are gaining importance because of aggressive push from government not only to reduce air pollution but also to reduce dependency of fossil fuel. EVs and necessary charging infrastructure along with ‘connected’ technology is redefining mobility. Considering the fast growing EV market, it becomes important for an EV Powertrain Architect to design and develop a powertrain solution having low engineering efforts and satisfying business, market and regulatory requirements at a competitive price. This paper presents a compact, flexible, convenient and smart featured simulation tool for an EV Powertrain Architect for estimating the specifications of key powertrain components such as traction battery and electric motor. The proposed tool takes into consideration the end-user as well as the regulatory requirements of range, maximum speed, acceleration and gradeability.
Technical Paper

Simulation Methodology Development for Vibration Test of Bus Body Structure Code AIS-153:2018

2024-01-16
2024-26-0249
A bus is integral part of public transportation in both rural and urban areas. It is also used for scheduled transport, tourism, and school transport. Buses are the common mode of transport all over the world. The growth in economy, the electrification of public transport, demand in shared transport, etc., is leading to a surge in the demand for buses and accelerating the overall growth of the bus industry. With the increased number of buses, the issue of safety of passengers and the crew assumes special importance. The comfort of driver and passenger in the vehicle involves the vibration performance and therefore, the structural integrity of buses is critically important. Bus safety act depicts the safety and comfort of bus operations, management of safety risks, continuous improvement in bus safety management, public confidence in the safety of bus transport, appropriate stakeholder involvement and the existence of a safety culture among bus service providers.
Technical Paper

Role of Silicone Based Thermal Encapsulants for 2&3W Battery Module Thermal Management Applications

2023-05-25
2023-28-1316
The Indian market for battery-powered electric vehicles (xEV) is growing exponentially in the coming years, fueled by tumbling lithium-ion battery prices and favorable government policies. Lithium-ion battery is leading in clean mobility ecosystem for electric vehicles. LiBs efficient and safe performance for tropical climatic conditions is one of the primary requirements for xEV to succeed in India. The performance of LiBs, however, is impacted due to ambient temperature as well as the heat generated within cell due to the load cycle electrochemical reaction. The acceptable operating temperature region for LiBs normally is between 20 °C to 45 °C and anything outside of this region will lead to degradation of performance and irreversible damages. Therefore, understanding the thermal behavior is very crucial for an efficient battery thermal management.
Technical Paper

Ride-Comfort Analysis for Commercial Truck Using MATLAB Simulink

2019-11-21
2019-28-2428
Ride Comfort forms a core design aspect for suspension and is to be considered as primary requirement for vehicle performance in terms of drivability and uptime of passenger. Maintaining a balance between ride comfort and handling poses a major challenge to finalize the suspension specifications. The objective of this project it to perform ride- comfort analysis for a commercial truck using MATLAB Simulink. First, benchmarking was carried out on a 4x2 commercial truck and the physical parameters were obtained. Further, a mathematical model is developed using MATLAB Simulink R2015a and acceleration- time data is collected. An experimentation was carried out on the truck at speeds of 20 kmph, 30 kmph, 40 kmph and 50 kmph over a single hump to obtain actual acceleration time domain data. The model is then correlated with actual test over a single hump. This is followed by running the vehicle on Class A, B & C road profiles to account for random vibrations.
Technical Paper

Quick Analysis of Elemental Composition of Automotive Materials Using Non-destructive Technique

2023-05-25
2023-28-1327
Energy dispersive X-ray fluorescence (EDXRF) analysis have made it possible to conduct elemental analysis on a variety of fields, including those with environmental, automotive, geological, chemical, pharmaceutical, archaeology, and biological origins. The ability of EDXRF to deliver quick, non-destructive, and multi-elemental analytical findings with increased sensitivity is of great importance. It is a vital tool for quality control and quality assurance applications. Thus, EDXRF plays an important role to compare batch-to-batch products for meeting quality standards. This paper presents application of EDXRF as an effective tool for quick qualitative and quantitative evaluation of given samples.
Technical Paper

Process Modelling of Aluminium Propeller Shaft by Integrated Computational Materials Engineering Approach

2021-09-22
2021-26-0374
An excellent physical and mechanical property makes Aluminium (Al) alloy suitable alternative lightweight materials against steel and cast iron in automotive components. ICME is a computational tool, which integrates the materials information to engineering product performance analysis. MatCalc is ICME tool, which follows the chain rule of process, microstructure, property and performance relationship in materials development. This paper reports the development of Al 6061-T6 propeller shaft through forging process and the materials and process model of the Al yoke is simulated using MatCalc simulation software. Finite element analysis method is used for designing of Al 6061-T6 propeller shaft. The forged Al yoke is solutionized at temperature 550°C for 1 hr followed by artificial ageing at temperature 180°C for 16 hrs to improve the hardness and strength of the yoke.
Technical Paper

Prediction of Tyre Dynamic Behaviour for NVH and its Experimental Validation in Anechoic Chamber

2021-09-22
2021-26-0303
In present scenario, tyre industry is more focused on providing maximum extent of NVH comfort to passengers by improvising the tyre design. Noise contribution from the tyres is classified in to three regions, viz., structure-borne (tyre vibrations), air-borne (tread pattern) and cavity noise (air cavity). In general, a Finite Element (FE) model of tyre provides an inherent advantage of analyzing tyre dynamic behavior. In this paper, an attempt was made to develop a three-dimensional FE tyre model and validate the same through experimental approach. The CAD Model of the tyre was generated through 3D image scanning process. Material property extraction of tyre was carried out by Universal Testing Machine (UTM) to generate Finite Element (FE) model. For validation of tyre FE model, Experimental Modal Analysis (EMA) and Noise Transfer Function (NTF) were conducted.
Technical Paper

Prediction of Thermal Comfort Inside a Midibus Passenger Cabin Using CFD and Its Experimental Validation

2015-01-14
2015-26-0210
This paper presents a methodology for predicting thermal comfort inside Midibus cabin with an objective to modify the Heating, Ventilation and Air Conditioning (HVAC) duct design and parametric optimization in order to have improved thermal comfort of occupant. For this purpose the bus cavity is extracted from baseline CAD model including fully seated manikins with various seating positions. Solar Load has been considered in the computational model and passenger heat load is considered as per BSR/ASHRAE 55-1992R standard. CFD simulation predicted the air temperature and velocity distribution inside passenger cabin of the baseline model. The experimental measurements have been carried out as per the guidelines set in APTA-BT-RP-003-07 standard. The results obtained from CFD and Experimental test were analysed as per EVS EN ISO7730 standard and calculated occupant comfort in terms of thermal comfort parameters like Predicted Mean Vote (PMV) and Predicted Percentage Dissatisfied (PPD).
Technical Paper

Performance Evaluation of EV/HEV Systems Using xEV Offline Simulator

2017-01-10
2017-26-0097
This paper introduces xEV Simulator- A MATLAB based simulator platform capable of analyzing EV/HEV powertrain system in both backward and forward modelling. xEV Simulator employs Forward Simulation for drive-cycle performance evaluations and Backward simulation for powertrain component sizing and support xEV powertrain design. The powertrain subsystems are modelled in Simulink. This enables the model based system simulation and further controller prototyping and HiL testing. xEV Offline Simulator GUI enables user to simulate standard EV/HEV configurations with standard drive-cycles. The model parameters of different component subsystems can be configured. The Backward modelling and simulation support the estimation of subsystem values like Propulsion motor, Energy storage, etc., to perform as per the drive-cycle requirement.
Technical Paper

Optimization in Tube Yoke Forging Process using Computer Simulation

2017-01-10
2017-26-0238
New process development of forging component requires in-depth knowledge and experience related to the process. Also it requires number of physical trials to arrive at optimum process and initial billet dimensions. With the help of reliable computer simulation tool, it is possible to optimize the complete forging process and billet dimensions. Simulation provides much more insight about the process and possible forging defects. This saves considerable time and money. This paper describes about a complete forging process designed for a complex component. With the help of metal forming simulation software, complete forging process was simulated and optimized. Forging defects were removed during optimization of the process. Billet weight optimization was also carried out. Deciding the preforming shape of the billet was the main challenge. An innovative pre-forging shape was arrived which resulted in eliminating one process stage.
Technical Paper

Model Order Reduction Technique to Aid Control System Design

2021-09-22
2021-26-0347
Design of real time active controls for structural dynamics problems requires a very precise mathematical model, to closely determine the system dynamic behavior, under virtual simulation. The finite element models can somehow be used as a mathematical model but due to complex shape/structure of the component, the size of discrete models resulting from finite element analysis is usually very large, causing the virtual simulation to be extremely computationally intensive and time consuming, also the boundary conditions applied are not very scalable, making the system deviate from its real dynamic behavior. Thus, this paper deals with the design of a Model Order Reduction technique, using orthogonal decomposition of system matrices, which can be used for creating accurate low-order dynamic model with scalable boundary conditions.
Technical Paper

Modal Analysis of Chladni Plate Using Cymatics

2020-09-25
2020-28-0320
This work aims at demonstrating nodes and antinodes at various frequencies of vibrations. Chladni plate is used for this purpose. When the plate is excited because of vibrations from a vibrator source, the sand of the plate creates specific patterns. These patterns are related to the excitation frequency. The sand on the plate moves away from antinodes where the amplitude of the standing wave is maximum and towards nodal lines where the amplitude is minimum or zero, forming patterns known as Chladni figures. The formation of patterns depends on material properties, geometry of plate, and thickness of plate and frequency/vibration pattern of the vibrator. The experimental setup consisted of a aluminum rectangular plate of 16 cm × 16 cm and aluminum circular plate of diameter 16 cm are having thickness of 0.61 mm placed over a mechanical vibrator (GelsonLab HSPW-003), which was driven by a sine wave signal generator (Ningbo Hema scientific).
Technical Paper

Methodology for Prediction of Windscreen Wiping Area through Simulation

2017-01-10
2017-26-0257
Front windscreen wiping test is legal requirement for all motor vehicles as per standards like IS15802:2008 [1], IS15804:2008 [2] in India. This test requires windscreen mock-up/actual vehicle to be tested along with all wiping mechanisms such that minimum percentage areas to be wiped should meet the requirements specified in the IS standard. From manufacturer’s perspective this involves investment of lot of time and cost to arrive at the final design solution in order to meet the wiping requirements. The work scope in this paper is limited to bus category of vehicles. The methodology presented in this paper would enable quick design solutions for bus body builders or manufacturers to meet the wiping requirements specified in IS standard. The methodology presented in this paper was developed to carry out windscreen wiping test through commercially available simulation software.
Technical Paper

Mechanical and Aerodynamic Noise Prediction for Electric Vehicle Traction Motor and Its Validation

2017-01-10
2017-26-0270
With emission norms getting more and more stringent, the trend is shifting towards electric and hybrid vehicles. Electric motor replaces engine as the prime mover in these vehicles. Though these vehicles are quieter compared to their engine counterpart, they exhibit certain annoying sound quality perception. There is no standard methodology to predict the noise levels of these motors. Electric motor noise comprises of mainly three sources viz., Aerodynamic, Electromagnetic and Mechanical. A methodology has been developed to predict two major noise sources of electric motor out of the three above viz. Mechanical and Aerodynamic noise. These two noise sources are responsible for the tonal noise in an electric motor. Aerodynamic noise arises most often around the fan, or in the vicinity of the machine that behaves like a fan. This noise is predominant at higher motor speed and also in electric vehicle due to higher speed fluctuation.
Technical Paper

LCV Chassis Frame Optimization Using Combined Simulation and Experimental Approach

2017-01-10
2017-26-0289
The design and development of complete vehicle, understanding of chassis system development process is an important task. Chassis frame of a vehicle is supporting member, both structurally and functionally, to all other chassis aggregate systems viz. suspension, steering, braking system etc. In this paper, a methodology for chassis frame model construction and validation is explained. In present work, chassis frame model is validated in terms of modal parameters and also against static loading conditions. Existing chassis 3D Computer Aided Design (CAD) data was generated using scanning and cloud point data conversion technique. FE model was generated and validated through experimental measurements viz. modal testing, vertical bending, lateral bending, and torsional bending test. Loading and boundary conditions were replicated on the complete FE model in CAE domain and test validation was carried out using appropriate mesh biasing and weld modeling techniques.
X